Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading : : Leap-Ucd-2017.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2019.
Ã2020.
Year of Publication:2019
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (655 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Contributors
  • Part I: Overview Papers
  • Chapter 1: LEAP-UCD-2017 V. 1.01 Model Specifications
  • 1.1 Introduction
  • 1.1.1 Differences Between This Paper and Pre-test Specifications
  • 1.1.2 Goals and Overview
  • 1.2 Scaling Laws
  • 1.3 Description of the Model Construction and Instrumentation
  • 1.3.1 Soil Material: Ottawa F-65 Sand
  • Modified ASTM D4254 Method C for Minimum Dry Density
  • Modified Lade et al. (1998) Method for Maximum Density
  • 1.3.2 Placement of the Sand by Pluviation
  • 1.3.3 Measurement of Density of the Sand
  • 1.3.4 Geometry of the Model
  • 1.3.5 Saturation of the Model
  • 1.4 Instrumentation of the Model
  • 1.4.1 Required Instrumentation
  • 1.4.2 Displacement Measurements
  • Careful Before and After Photographs of the Model and Surface Markers
  • Lateral Displacements from Cameras Mounted on the Centrifuge
  • Residual Settlements from Pore Pressure Sensors
  • Direct Measurements of Sensor and Surface Marker Locations
  • Colored Sand Layers, Noodles, and Sensor Locations During Dissection
  • Settlement Gage Sensors
  • Tactile Pressure Sensors
  • 1.5 Cone Penetration Testing
  • 1.6 Shear Wave Velocity
  • 1.7 Ground Motions
  • 1.7.1 Destructive Ground Motions
  • 1.7.2 Nondestructive Ground Motions
  • 1.7.3 Assessment of Tapered Sine Wave (TSW) Ground Motions
  • 1.8 Data Reporting Anticipated Plan/Concept
  • 1.8.1 New Leap Database
  • 1.8.2 Dynamic Shaking Sensor Data
  • 1.8.3 Pore Pressure Long-Term Time Series Data
  • 1.8.4 Summary of Other Anticipated Report Requirements to Be Detailed in a Separate Document
  • References
  • Chapter 2: Grain Size Analysis and Maximum and Minimum Dry Density Testing of Ottawa F-65 Sand for LEAP-UCD-2017
  • 2.1 Background and Introduction
  • 2.2 Grain Size Analysis
  • 2.2.1 Discussion of Grain Size Analyses
  • 2.3 Minimum and Maximum Index Dry Density.
  • 2.3.1 LEAP Minimum Density Procedure
  • 2.3.2 LEAP Maximum Density Procedure
  • 2.3.3 Results of Index Dry Density Testing
  • 2.3.4 Discussion of Minimum Density
  • 2.3.5 Discussion of Maximum Density
  • 2.4 Testing Results Effect on Relative Density
  • 2.5 Measurements by ASTM Method
  • 2.6 Conclusions
  • References
  • Chapter 3: Physical and Mechanical Properties of Ottawa F65 Sand
  • 3.1 Introduction
  • 3.2 Ottawa F65 Soil Characterization
  • 3.2.1 Specific Gravity Tests
  • 3.2.2 Particle Size Distribution Analysis
  • 3.2.3 Hydraulic Conductivity
  • 3.2.4 Maximum and Minimum Void Ratios
  • 3.3 Cyclic Triaxial Tests
  • 3.3.1 Experiment Procedures
  • 3.3.2 Sample Preparation
  • 3.3.3 Summary of Experimental Results and Observations
  • 3.4 Concluding Remarks
  • References
  • Chapter 4: LEAP-UCD-2017 Comparison of Centrifuge Test Results
  • 4.1 Introduction
  • 4.2 Densities and Penetration Resistances
  • 4.3 Base Input Motions in First Destructive Motion
  • 4.4 Acceleration Response of Soil Layers in First Destructive Motion
  • 4.5 Displacement Response of the Soil Layers in First Destructive Motion
  • 4.6 Pore Pressure Response of Soil Layers in First Destructive Motion
  • 4.7 Correlations Between Displacement, Dr, and IMs
  • 4.7.1 Rationale for Scaling Between PGA and CSR for Simplified Procedure
  • 4.8 Correlations Between Excess Pore Pressures, Dr, and IMs
  • 4.9 Correlations Between Peak Cyclic Displacements, Dr, and IMs
  • 4.10 Summary and Conclusions
  • References
  • Chapter 5: Archiving of Experimental Data for LEAP-UCD-2017
  • 5.1 Introduction
  • 5.2 Accessing Published LEAP-UCD-2017 Data in DesignSafe
  • 5.2.1 General Report File: 1_ExperimentStrenDemPerfSummary_v11b.xlsx
  • 5.2.2 General Report File: 2a_AllTestsCompared_24TestsPerPage.pdf
  • 5.2.3 General Report Folder: 2b_AllTestsCompared_24TestsPerPage_OnePagePerFile.
  • 5.2.4 General Report File: 3_AllSensorDataFromAllTests.pdf
  • 5.2.5 General Report File: 4_Version1.01_LEAP UCD2017_SpecsforExperiments.docx
  • 5.2.6 General Report File: 5_Version_0.99_2017_CentrifugeTestTemplate.xlsx
  • 5.2.7 General Report Folder: 6_LEAP-UCD-2017 Cone Penetrometer Equipment Details
  • 5.2.8 General Report Folder: 7_Videos of Max and Min Density Tests
  • 5.2.9 General Report File: 8_Dec2017WorkshopHandout.pdf
  • 5.3 Detailed Data for Each Model Test
  • 5.3.1 Selecting an Experiment Site
  • 5.3.2 Model Configuration Data
  • 5.3.3 Sensor Information
  • 5.4 Working Directory for Data LEAP-UCD-2017
  • 5.5 Summary
  • References
  • Chapter 6: Comparison of LEAP-UCD-2017 CPT Results
  • 6.1 Introduction
  • 6.2 Design
  • 6.3 LEAP-UCD-2017 Experiment
  • 6.4 Depth at Which the Cone Tip Touches the Surface (Depth of Zero Penetration)
  • 6.5 Effects of Scale Factor and Container Width
  • 6.6 Conclusions
  • References
  • Chapter 7: Difference and Sensitivity Analyses of the LEAP-2017 Experiments
  • 7.1 Introduction
  • 7.2 Experiment Overview
  • 7.3 Difference Metrics
  • 7.3.1 Input Motion Differences
  • 7.3.2 Response Motion Differences
  • 7.4 Sensitivity Analysis
  • 7.4.1 Acceleration Sensitivity
  • 7.4.2 Permanent Displacement Sensitivity
  • 7.5 Conclusions
  • References
  • Chapter 8: LEAP-2017 Simulation Exercise: Overview of Guidelines for the Element Test Simulations
  • 8.1 Introduction
  • 8.2 Soil Characterization and Element Tests
  • 8.2.1 LEAP-2017 Tests
  • 8.2.2 Additional Available Element Tests on Ottawa Sand
  • 8.3 Model Calibration Report by Simulation Teams
  • 8.3.1 Model Description
  • 8.3.2 Model Parameters
  • 8.3.3 Calibration Method
  • 8.3.4 Liquefaction Strength Curves
  • 8.4 Simulation Results
  • 8.4.1 Results Data Files
  • 8.4.2 Matlab Scripts
  • 8.5 Concluding Remarks
  • References.
  • Chapter 9: LEAP-2017 Simulation Exercise: Calibration of Constitutive Models and Simulation of the Element Tests
  • 9.1 Introduction
  • 9.2 The Numerical Simulation Teams
  • 9.3 Summary of the Element Test Simulations
  • 9.4 Liquefaction Strength Curves
  • 9.5 Conclusions
  • References
  • Chapter 10: LEAP-2017: Comparison of the Type-B Numerical Simulations with Centrifuge Test Results
  • 10.1 Introduction
  • 10.2 LEAP-2017 Centrifuge Experiments
  • 10.3 Type-B Numerical Simulations
  • 10.4 Summary of Type-B Simulations Results
  • 10.4.1 Excess Pore Water Pressure Time Histories
  • 10.4.2 Acceleration Time Histories and Spectral Accelerations
  • 10.4.3 Lateral Displacements
  • 10.5 Overall Performance of Numerical Simulations
  • 10.6 Conclusions
  • References
  • Chapter 11: Numerical Sensitivity Study Compared to Trend of Experiments for LEAP-UCD-2017
  • 11.1 Description of the Requested Sensitivity Study
  • 11.2 Characterization of Displacements from Experiments
  • 11.3 2D Comparisons of Experimental Regression Surfaces to Numerical Simulations
  • 11.4 Error Measures and Ranking of Numerical Simulations
  • 11.5 3-D Comparison of Simulations to Experimental Regression Surfaces
  • 11.6 Summary and Conclusions
  • References
  • Part II: Centrifuge Experiment Papers
  • Chapter 12: LEAP-UCD-2017 Centrifuge Tests at Cambridge
  • 12.1 Introduction
  • 12.2 Experiment Setup
  • 12.2.1 Sand Pouring
  • 12.2.2 Viscosity Measurement
  • 12.2.3 Saturation
  • 12.2.4 Slope Cutting
  • 12.2.5 CPT
  • 12.3 Destructive Motions
  • 12.4 CPT Strength Profiles
  • 12.5 PIV
  • 12.6 Conclusions
  • References
  • Chapter 13: LEAP-UCD-2017 Centrifuge Test at University of California, Davis
  • 13.1 Introduction
  • 13.2 UC Davis Test Specific Information
  • 13.2.1 Description of the Model and Instrumentation
  • 13.2.2 Sensors
  • 13.2.3 Scaling Laws
  • 13.3 Test Results.
  • 13.3.1 Achieved Ground Motions
  • 13.3.2 Accelerometer Records During Destructive Motions
  • 13.3.3 Excess Pore Pressures
  • 13.3.4 Cone Penetration Tests
  • 13.3.5 Surface Marker Surveys
  • 13.4 Nonconformities with Specifications
  • 13.5 Advancements in Centrifuge Testing
  • 13.6 Method of Measuring Density
  • 13.7 Pore Fluid Viscosity and Saturation
  • 13.7.1 Pore Fluid Viscosity
  • 13.7.2 Model Saturation
  • 13.8 Conclusions
  • References
  • Chapter 14: LEAP-2017 Centrifuge Test at Ehime University
  • 14.1 Introduction
  • 14.2 Centrifuge at Ehime University
  • 14.3 Centrifuge Model
  • 14.3.1 Model Description
  • 14.3.2 Sand
  • 14.3.3 Placement of Sand
  • 14.3.4 Saturation
  • 14.3.5 Test Procedure
  • 14.4 Results
  • 14.4.1 Shear Wave Velocity
  • 14.4.2 Input Acceleration
  • 14.4.3 Excess Pore Pressure Response
  • 14.4.4 Liquefaction Triggering
  • 14.4.5 Deformation of the Model
  • 14.5 Conclusion
  • References
  • Chapter 15: LEAP-UCD-2017 Centrifuge Test at IFSTTAR
  • 15.1 Introduction
  • 15.2 As Built Model
  • 15.2.1 Soil Material and Placement of the Sand by Pluviation
  • 15.2.2 Rigid Container Configuration and Sensor Layout
  • 15.2.3 Viscosity of Pore Fluid
  • 15.2.4 Saturation Process
  • 15.3 Achieved Ground Motions
  • 15.3.1 Horizontal Component
  • 15.3.2 Vertical Component
  • 15.4 Results
  • 15.4.1 Pore Pressure and Acceleration Responses
  • 15.4.2 Surface Maker Response
  • 15.5 Conclusion
  • References
  • Chapter 16: LEAP-UCD-2017 Centrifuge Test at KAIST
  • 16.1 Introduction
  • 16.2 Centrifuge Facility and Earthquake Simulator at KAIST
  • 16.3 Physical Modeling
  • 16.3.1 Soil Material and Density
  • 16.3.2 Viscous Fluid
  • 16.3.3 Model Description and Instrumentations
  • 16.3.4 Saturation and Container Modifications
  • 16.3.5 Sequence of the Centrifuge Test
  • 16.4 Centrifuge Test Results
  • 16.4.1 Achieved Input Motion.
  • 16.4.2 Investigation of Soil Model.