Handbook of Vascular Biometrics.

Saved in:
Bibliographic Details
Superior document:Advances in Computer Vision and Pattern Recognition Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2019.
©2020.
Year of Publication:2019
Edition:1st ed.
Language:English
Series:Advances in Computer Vision and Pattern Recognition Series
Online Access:
Physical Description:1 online resource (535 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5005978038
ctrlnum (MiAaPQ)5005978038
(Au-PeEL)EBL5978038
(OCoLC)1128096156
collection bib_alma
record_format marc
spelling Uhl, Andreas.
Handbook of Vascular Biometrics.
1st ed.
Cham : Springer International Publishing AG, 2019.
©2020.
1 online resource (535 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Advances in Computer Vision and Pattern Recognition Series
Intro -- Foreword -- Preface -- Objectives -- Audience -- Organisation -- Part I: Introduction -- Part II: Hand and Finger Vein Biometrics -- Part III: Sclera and Retina Biometrics -- Part IV: Security and Privacy in Vascular Biometrics -- Acknowledgements -- Contents -- Part I Introduction -- 1 State of the Art in Vascular Biometrics -- 1.1 Introduction -- 1.1.1 Imaging Hand-Based Vascular Biometric Traits -- 1.1.2 Imaging Eye-Based Vascular Biometric Traits -- 1.1.3 Pros and Cons of Vascular Biometric Traits -- 1.2 Commercial Sensors and Systems -- 1.2.1 Hand-Based Vascular Traits -- 1.2.2 Eye-Based Vascular Traits -- 1.3 Algorithms in the Recognition Toolchain -- 1.3.1 Finger Vein Recognition Toolchain -- 1.3.2 Palm Vein Recognition Toolchain -- 1.3.3 (Dorsal) Hand Vein Recognition Toolchain -- 1.3.4 Wrist Vein Recognition Toolchain -- 1.3.5 Retina Recognition Toolchain -- 1.3.6 Sclera Recognition Toolchain -- 1.4 Datasets, Competitions and Open-Source Software -- 1.4.1 Hand-Based Vascular Traits -- 1.4.2 Eye-Based Vascular Traits -- 1.5 Template Protection -- 1.5.1 Hand-Based Vascular Traits -- 1.5.2 Eye-Based Vascular Traits -- 1.6 Presentation Attacks and Detection, and Sample Quality -- 1.6.1 Presentation Attack Detection -- 1.6.2 Biometric Sample Quality-Hand-Based Vascular Traits -- 1.6.3 Biometric Sample Quality-Eye-Based Vascular Traits -- 1.7 Mobile and On-the-Move Acquisition -- 1.7.1 Hand-Based Vascular Traits -- 1.7.2 Eye-Based Vascular Traits -- 1.8 Disease Impact on Recognition and (Template) Privacy -- 1.9 Conclusion and Outlook -- References -- 2 A High-Quality Finger Vein Dataset Collected Using a Custom-Designed Capture Device -- 2.1 Introduction -- 2.2 Overview of Finger Vein Acquisition Systems -- 2.2.1 Types of Sensors -- 2.2.2 Commercial Sensors -- 2.2.3 Sensors Developed by Academics.
2.3 University of Twente Finger Vein Capture Device -- 2.4 Description of Dataset -- 2.5 Results -- 2.5.1 Performance Analysis -- 2.6 Next-Generation Finger Vein Scanner -- 2.6.1 Overview -- 2.6.2 Illumination Control -- 2.6.3 3D Reconstruction -- 2.7 Conclusions -- 2.8 Future Work -- References -- 3 OpenVein-An Open-Source Modular Multipurpose Finger Vein Scanner Design -- 3.1 Introduction -- 3.2 Finger Vein Scanners -- 3.2.1 Light Source Positioning -- 3.2.2 Two Main Perspectives of the Finger-Dorsal and Palmar -- 3.2.3 Commercial Finger Vein Scanners -- 3.2.4 Finger Vein Prototype Scanners and Datasets in Research -- 3.3 PLUS OpenVein Finger Vein Scanner -- 3.3.1 Advantages and Differences to Existing Designs -- 3.3.2 Image Sensor, Lens and Additional Filter -- 3.3.3 Light Transmission Illuminator -- 3.3.4 Reflected Light Illuminator -- 3.3.5 Illuminator Brightness Control Board -- 3.3.6 Finger Placement Unit -- 3.3.7 Housing Parts -- 3.3.8 Capturing Software -- 3.4 PLUSVein-FV3 Finger Vein Dataset -- 3.5 Conclusion -- 3.5.1 Future Work -- References -- 4 An Available Open-Source Vein Recognition Framework -- 4.1 Introduction -- 4.2 Related Work -- 4.3 PLUS OpenVein Toolkit -- 4.3.1 Directory Structure -- 4.3.2 Settings Files -- 4.3.3 External Dependencies -- 4.4 Included Vein Recognition Schemes -- 4.4.1 Input File Handling/Supported Datasets -- 4.4.2 Preprocessing -- 4.4.3 Feature Extraction -- 4.4.4 Comparison -- 4.4.5 Comparison/Evaluation Protocols -- 4.4.6 Performance Evaluation Tools -- 4.4.7 Feature and Score-Level Fusion -- 4.5 Experimental Example -- 4.5.1 Dataset and Experimental Set-Up -- 4.5.2 Experimental Results -- 4.6 Conclusion and Future Work -- References -- Part II Hand and Finger Vein Biometrics -- 5 Use Case of Palm Vein Authentication -- 5.1 Introduction -- 5.2 Palm Vein Sensing -- 5.3 Sensor Products with Reflection Method.
5.4 Matching Performance -- 5.5 Use Cases of Palm Vein Authentication -- 5.5.1 Usage Situation -- 5.5.2 Login Authentication -- 5.5.3 Physical Access Control Systems -- 5.5.4 Payment Systems -- 5.5.5 Financial Services -- 5.5.6 Health Care -- 5.5.7 Airport Security -- 5.5.8 Government and Municipal -- 5.6 Conclusion -- References -- 6 Evolution of Finger Vein Biometric Devices in Terms of Usability -- 6.1 Introduction -- 6.1.1 Early Implementation -- 6.1.2 Commercialisation -- 6.1.3 Evolutions of the Finger Vein Biometric Devices -- 6.2 Compliance with Regulations -- 6.2.1 Use Case/Background -- 6.2.2 Usability Requirement Details -- 6.2.3 Challenges -- 6.2.4 Implementation -- 6.3 Compactness -- 6.3.1 Use Case/Background -- 6.3.2 Usability Requirement Details -- 6.3.3 Challenges -- 6.3.4 Implementation -- 6.4 Portability and Mobility -- 6.4.1 Use Case/Background -- 6.4.2 Usability Requirement Details -- 6.4.3 Challenges -- 6.4.4 Implementation -- 6.5 Universal Design -- 6.5.1 Use Case/Background -- 6.5.2 Usability Requirement Details -- 6.5.3 Challenges -- 6.5.4 Implementation -- 6.6 Durability and Anti-vandalism -- 6.6.1 Use Case/Background -- 6.6.2 Usability Requirement Details -- 6.6.3 Challenges -- 6.6.4 Implementation -- 6.7 High Throughput -- 6.7.1 Use Case/Background -- 6.7.2 Usability Requirement Details -- 6.7.3 Challenges -- 6.7.4 Implementation -- 6.8 Universality/Availability -- 6.8.1 Use Case/Background -- 6.8.2 Usability Requirement Details -- 6.8.3 Challenges -- 6.8.4 Implementation -- 6.9 Summary -- References -- 7 Towards Understanding Acquisition Conditions Influencing Finger Vein Recognition -- 7.1 Introduction -- 7.2 Varying Acquisition Conditions-A Challenging Aspect in Research and Practical Applications -- 7.3 Deployed Scanner Devices -- 7.4 Finger Vein Acquisition Conditions Dataset.
7.5 Finger Vein Recognition Toolchain and Evaluation Protocol -- 7.6 Experimental Results Analysis -- 7.7 Conclusion -- References -- 8 Improved CNN-Segmentation-Based Finger Vein Recognition Using Automatically Generated and Fused Training Labels -- 8.1 Introduction -- 8.2 Related Works -- 8.2.1 Classical Finger Vein Recognition Techniques -- 8.2.2 CNN-Based Finger Vein Recognition -- 8.2.3 Automated Generation of CNN Training Data -- 8.3 Finger Vein Pattern Extraction Using CNNs -- 8.4 Training Label Generation and Setups -- 8.5 Experimental Framework -- 8.6 Results -- 8.7 Discussion -- 8.8 Conclusion -- References -- 9 Efficient Identification in Large-Scale Vein Recognition Systems Using Spectral Minutiae Representations -- 9.1 Introduction -- 9.1.1 Organisation -- 9.1.2 Workload Reduction in Vein Identification Systems -- 9.1.3 Concept Focus -- 9.2 Workload Reduction Concepts -- 9.2.1 Efficient Data Representation -- 9.2.2 Serial Combination of SMR -- 9.2.3 Indexing Methods -- 9.2.4 Hardware Acceleration -- 9.2.5 Fusion of Concepts -- 9.3 Experiments -- 9.3.1 Experimental Setup -- 9.3.2 Performance Evaluation -- 9.3.3 Experiments Overview -- 9.4 Results -- 9.4.1 Spectral Minutiae Representation -- 9.4.2 Binary Spectral Minutiae Representation -- 9.4.3 Serial Combination of SMR -- 9.4.4 Indexing Methods -- 9.4.5 Fusion of Concepts -- 9.4.6 Discussion -- 9.5 Summary -- References -- 10 Different Views on the Finger--- Score-Level Fusion in Multi-Perspective Finger Vein Recognition -- 10.1 Introduction -- 10.2 Multi-perspective Finger Vein Biometrics -- 10.3 Multi-perspective Finger Vein Capture Device -- 10.4 Multi-perspective Finger Vein Dataset -- 10.5 Biometric Fusion -- 10.5.1 Fusion in Finger Vein Recognition -- 10.6 Experimental Analysis -- 10.6.1 Finger Vein Dataset -- 10.6.2 Finger Vein Recognition Tool chain.
10.6.3 Score-Level Fusion Strategy and Toolkit -- 10.6.4 Evaluation Protocol -- 10.6.5 Single Perspective Performance Results -- 10.6.6 Multi-perspective Fusion Results -- 10.6.7 Multi-algorithm Fusion Results -- 10.6.8 Combined Multi-perspective and Multi-algorithm Fusion -- 10.6.9 Results Discussion -- 10.7 Conclusion and Future Work -- References -- Part III Sclera and Retina Biometrics -- 11 Retinal Vascular Characteristics -- 11.1 Introduction -- 11.1.1 Anatomy of the Retina -- 11.1.2 History of Retinal Recognition -- 11.1.3 Medical and Biometric Examination and Acquisition Tools -- 11.1.4 Recognition Schemes -- 11.1.5 Achieved Results Using Our Scheme -- 11.1.6 Limitations -- 11.2 Eye Diseases -- 11.2.1 Automatic Detection of Druses and Exudates -- 11.2.2 Testing -- 11.3 Biometric Information Amounts in the Retina -- 11.3.1 Theoretical Determination of Biometric Information in Retina -- 11.3.2 Used Databases and Applications -- 11.3.3 Results -- 11.4 Synthetic Retinal Images -- 11.4.1 Vascular Bed Layer -- 11.4.2 Layers -- 11.4.3 Background Layers -- 11.4.4 Generating a Vascular Bed -- 11.4.5 Testing -- 11.4.6 Generating Synthetic Images Via Neural Network -- References -- 12 Vascular Biometric Graph Comparison: Theory and Performance -- 12.1 Introduction -- 12.2 The Biometric Graph -- 12.2.1 The Biometric Graph -- 12.2.2 Biometric Graph Extraction -- 12.3 The Biometric Graph Comparison Algorithm -- 12.3.1 BGR-Biometric Graph Registration -- 12.3.2 BGC-Biometric Graph Comparison -- 12.4 Results -- 12.4.1 Vascular Databases -- 12.4.2 Comparison of Graph Topology Across Databases -- 12.4.3 Comparison of MCS Topology in BGC -- 12.4.4 Comparison of BGC Performance Across Databases -- 12.5 Anchors for a BGC Approach to Template Protection -- 12.5.1 Dissimilarity Vector Templates for Biometric Graphs -- 12.5.2 Anchors for Registration.
12.5.3 The Search for Anchors.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Busch, Christoph.
Marcel, Sébastien.
Veldhuis, Raymond.
Print version: Uhl, Andreas Handbook of Vascular Biometrics Cham : Springer International Publishing AG,c2019 9783030277307
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5978038 Click to View
language English
format eBook
author Uhl, Andreas.
spellingShingle Uhl, Andreas.
Handbook of Vascular Biometrics.
Advances in Computer Vision and Pattern Recognition Series
Intro -- Foreword -- Preface -- Objectives -- Audience -- Organisation -- Part I: Introduction -- Part II: Hand and Finger Vein Biometrics -- Part III: Sclera and Retina Biometrics -- Part IV: Security and Privacy in Vascular Biometrics -- Acknowledgements -- Contents -- Part I Introduction -- 1 State of the Art in Vascular Biometrics -- 1.1 Introduction -- 1.1.1 Imaging Hand-Based Vascular Biometric Traits -- 1.1.2 Imaging Eye-Based Vascular Biometric Traits -- 1.1.3 Pros and Cons of Vascular Biometric Traits -- 1.2 Commercial Sensors and Systems -- 1.2.1 Hand-Based Vascular Traits -- 1.2.2 Eye-Based Vascular Traits -- 1.3 Algorithms in the Recognition Toolchain -- 1.3.1 Finger Vein Recognition Toolchain -- 1.3.2 Palm Vein Recognition Toolchain -- 1.3.3 (Dorsal) Hand Vein Recognition Toolchain -- 1.3.4 Wrist Vein Recognition Toolchain -- 1.3.5 Retina Recognition Toolchain -- 1.3.6 Sclera Recognition Toolchain -- 1.4 Datasets, Competitions and Open-Source Software -- 1.4.1 Hand-Based Vascular Traits -- 1.4.2 Eye-Based Vascular Traits -- 1.5 Template Protection -- 1.5.1 Hand-Based Vascular Traits -- 1.5.2 Eye-Based Vascular Traits -- 1.6 Presentation Attacks and Detection, and Sample Quality -- 1.6.1 Presentation Attack Detection -- 1.6.2 Biometric Sample Quality-Hand-Based Vascular Traits -- 1.6.3 Biometric Sample Quality-Eye-Based Vascular Traits -- 1.7 Mobile and On-the-Move Acquisition -- 1.7.1 Hand-Based Vascular Traits -- 1.7.2 Eye-Based Vascular Traits -- 1.8 Disease Impact on Recognition and (Template) Privacy -- 1.9 Conclusion and Outlook -- References -- 2 A High-Quality Finger Vein Dataset Collected Using a Custom-Designed Capture Device -- 2.1 Introduction -- 2.2 Overview of Finger Vein Acquisition Systems -- 2.2.1 Types of Sensors -- 2.2.2 Commercial Sensors -- 2.2.3 Sensors Developed by Academics.
2.3 University of Twente Finger Vein Capture Device -- 2.4 Description of Dataset -- 2.5 Results -- 2.5.1 Performance Analysis -- 2.6 Next-Generation Finger Vein Scanner -- 2.6.1 Overview -- 2.6.2 Illumination Control -- 2.6.3 3D Reconstruction -- 2.7 Conclusions -- 2.8 Future Work -- References -- 3 OpenVein-An Open-Source Modular Multipurpose Finger Vein Scanner Design -- 3.1 Introduction -- 3.2 Finger Vein Scanners -- 3.2.1 Light Source Positioning -- 3.2.2 Two Main Perspectives of the Finger-Dorsal and Palmar -- 3.2.3 Commercial Finger Vein Scanners -- 3.2.4 Finger Vein Prototype Scanners and Datasets in Research -- 3.3 PLUS OpenVein Finger Vein Scanner -- 3.3.1 Advantages and Differences to Existing Designs -- 3.3.2 Image Sensor, Lens and Additional Filter -- 3.3.3 Light Transmission Illuminator -- 3.3.4 Reflected Light Illuminator -- 3.3.5 Illuminator Brightness Control Board -- 3.3.6 Finger Placement Unit -- 3.3.7 Housing Parts -- 3.3.8 Capturing Software -- 3.4 PLUSVein-FV3 Finger Vein Dataset -- 3.5 Conclusion -- 3.5.1 Future Work -- References -- 4 An Available Open-Source Vein Recognition Framework -- 4.1 Introduction -- 4.2 Related Work -- 4.3 PLUS OpenVein Toolkit -- 4.3.1 Directory Structure -- 4.3.2 Settings Files -- 4.3.3 External Dependencies -- 4.4 Included Vein Recognition Schemes -- 4.4.1 Input File Handling/Supported Datasets -- 4.4.2 Preprocessing -- 4.4.3 Feature Extraction -- 4.4.4 Comparison -- 4.4.5 Comparison/Evaluation Protocols -- 4.4.6 Performance Evaluation Tools -- 4.4.7 Feature and Score-Level Fusion -- 4.5 Experimental Example -- 4.5.1 Dataset and Experimental Set-Up -- 4.5.2 Experimental Results -- 4.6 Conclusion and Future Work -- References -- Part II Hand and Finger Vein Biometrics -- 5 Use Case of Palm Vein Authentication -- 5.1 Introduction -- 5.2 Palm Vein Sensing -- 5.3 Sensor Products with Reflection Method.
5.4 Matching Performance -- 5.5 Use Cases of Palm Vein Authentication -- 5.5.1 Usage Situation -- 5.5.2 Login Authentication -- 5.5.3 Physical Access Control Systems -- 5.5.4 Payment Systems -- 5.5.5 Financial Services -- 5.5.6 Health Care -- 5.5.7 Airport Security -- 5.5.8 Government and Municipal -- 5.6 Conclusion -- References -- 6 Evolution of Finger Vein Biometric Devices in Terms of Usability -- 6.1 Introduction -- 6.1.1 Early Implementation -- 6.1.2 Commercialisation -- 6.1.3 Evolutions of the Finger Vein Biometric Devices -- 6.2 Compliance with Regulations -- 6.2.1 Use Case/Background -- 6.2.2 Usability Requirement Details -- 6.2.3 Challenges -- 6.2.4 Implementation -- 6.3 Compactness -- 6.3.1 Use Case/Background -- 6.3.2 Usability Requirement Details -- 6.3.3 Challenges -- 6.3.4 Implementation -- 6.4 Portability and Mobility -- 6.4.1 Use Case/Background -- 6.4.2 Usability Requirement Details -- 6.4.3 Challenges -- 6.4.4 Implementation -- 6.5 Universal Design -- 6.5.1 Use Case/Background -- 6.5.2 Usability Requirement Details -- 6.5.3 Challenges -- 6.5.4 Implementation -- 6.6 Durability and Anti-vandalism -- 6.6.1 Use Case/Background -- 6.6.2 Usability Requirement Details -- 6.6.3 Challenges -- 6.6.4 Implementation -- 6.7 High Throughput -- 6.7.1 Use Case/Background -- 6.7.2 Usability Requirement Details -- 6.7.3 Challenges -- 6.7.4 Implementation -- 6.8 Universality/Availability -- 6.8.1 Use Case/Background -- 6.8.2 Usability Requirement Details -- 6.8.3 Challenges -- 6.8.4 Implementation -- 6.9 Summary -- References -- 7 Towards Understanding Acquisition Conditions Influencing Finger Vein Recognition -- 7.1 Introduction -- 7.2 Varying Acquisition Conditions-A Challenging Aspect in Research and Practical Applications -- 7.3 Deployed Scanner Devices -- 7.4 Finger Vein Acquisition Conditions Dataset.
7.5 Finger Vein Recognition Toolchain and Evaluation Protocol -- 7.6 Experimental Results Analysis -- 7.7 Conclusion -- References -- 8 Improved CNN-Segmentation-Based Finger Vein Recognition Using Automatically Generated and Fused Training Labels -- 8.1 Introduction -- 8.2 Related Works -- 8.2.1 Classical Finger Vein Recognition Techniques -- 8.2.2 CNN-Based Finger Vein Recognition -- 8.2.3 Automated Generation of CNN Training Data -- 8.3 Finger Vein Pattern Extraction Using CNNs -- 8.4 Training Label Generation and Setups -- 8.5 Experimental Framework -- 8.6 Results -- 8.7 Discussion -- 8.8 Conclusion -- References -- 9 Efficient Identification in Large-Scale Vein Recognition Systems Using Spectral Minutiae Representations -- 9.1 Introduction -- 9.1.1 Organisation -- 9.1.2 Workload Reduction in Vein Identification Systems -- 9.1.3 Concept Focus -- 9.2 Workload Reduction Concepts -- 9.2.1 Efficient Data Representation -- 9.2.2 Serial Combination of SMR -- 9.2.3 Indexing Methods -- 9.2.4 Hardware Acceleration -- 9.2.5 Fusion of Concepts -- 9.3 Experiments -- 9.3.1 Experimental Setup -- 9.3.2 Performance Evaluation -- 9.3.3 Experiments Overview -- 9.4 Results -- 9.4.1 Spectral Minutiae Representation -- 9.4.2 Binary Spectral Minutiae Representation -- 9.4.3 Serial Combination of SMR -- 9.4.4 Indexing Methods -- 9.4.5 Fusion of Concepts -- 9.4.6 Discussion -- 9.5 Summary -- References -- 10 Different Views on the Finger--- Score-Level Fusion in Multi-Perspective Finger Vein Recognition -- 10.1 Introduction -- 10.2 Multi-perspective Finger Vein Biometrics -- 10.3 Multi-perspective Finger Vein Capture Device -- 10.4 Multi-perspective Finger Vein Dataset -- 10.5 Biometric Fusion -- 10.5.1 Fusion in Finger Vein Recognition -- 10.6 Experimental Analysis -- 10.6.1 Finger Vein Dataset -- 10.6.2 Finger Vein Recognition Tool chain.
10.6.3 Score-Level Fusion Strategy and Toolkit -- 10.6.4 Evaluation Protocol -- 10.6.5 Single Perspective Performance Results -- 10.6.6 Multi-perspective Fusion Results -- 10.6.7 Multi-algorithm Fusion Results -- 10.6.8 Combined Multi-perspective and Multi-algorithm Fusion -- 10.6.9 Results Discussion -- 10.7 Conclusion and Future Work -- References -- Part III Sclera and Retina Biometrics -- 11 Retinal Vascular Characteristics -- 11.1 Introduction -- 11.1.1 Anatomy of the Retina -- 11.1.2 History of Retinal Recognition -- 11.1.3 Medical and Biometric Examination and Acquisition Tools -- 11.1.4 Recognition Schemes -- 11.1.5 Achieved Results Using Our Scheme -- 11.1.6 Limitations -- 11.2 Eye Diseases -- 11.2.1 Automatic Detection of Druses and Exudates -- 11.2.2 Testing -- 11.3 Biometric Information Amounts in the Retina -- 11.3.1 Theoretical Determination of Biometric Information in Retina -- 11.3.2 Used Databases and Applications -- 11.3.3 Results -- 11.4 Synthetic Retinal Images -- 11.4.1 Vascular Bed Layer -- 11.4.2 Layers -- 11.4.3 Background Layers -- 11.4.4 Generating a Vascular Bed -- 11.4.5 Testing -- 11.4.6 Generating Synthetic Images Via Neural Network -- References -- 12 Vascular Biometric Graph Comparison: Theory and Performance -- 12.1 Introduction -- 12.2 The Biometric Graph -- 12.2.1 The Biometric Graph -- 12.2.2 Biometric Graph Extraction -- 12.3 The Biometric Graph Comparison Algorithm -- 12.3.1 BGR-Biometric Graph Registration -- 12.3.2 BGC-Biometric Graph Comparison -- 12.4 Results -- 12.4.1 Vascular Databases -- 12.4.2 Comparison of Graph Topology Across Databases -- 12.4.3 Comparison of MCS Topology in BGC -- 12.4.4 Comparison of BGC Performance Across Databases -- 12.5 Anchors for a BGC Approach to Template Protection -- 12.5.1 Dissimilarity Vector Templates for Biometric Graphs -- 12.5.2 Anchors for Registration.
12.5.3 The Search for Anchors.
author_facet Uhl, Andreas.
Busch, Christoph.
Marcel, Sébastien.
Veldhuis, Raymond.
author_variant a u au
author2 Busch, Christoph.
Marcel, Sébastien.
Veldhuis, Raymond.
author2_variant c b cb
s m sm
r v rv
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Uhl, Andreas.
title Handbook of Vascular Biometrics.
title_full Handbook of Vascular Biometrics.
title_fullStr Handbook of Vascular Biometrics.
title_full_unstemmed Handbook of Vascular Biometrics.
title_auth Handbook of Vascular Biometrics.
title_new Handbook of Vascular Biometrics.
title_sort handbook of vascular biometrics.
series Advances in Computer Vision and Pattern Recognition Series
series2 Advances in Computer Vision and Pattern Recognition Series
publisher Springer International Publishing AG,
publishDate 2019
physical 1 online resource (535 pages)
edition 1st ed.
contents Intro -- Foreword -- Preface -- Objectives -- Audience -- Organisation -- Part I: Introduction -- Part II: Hand and Finger Vein Biometrics -- Part III: Sclera and Retina Biometrics -- Part IV: Security and Privacy in Vascular Biometrics -- Acknowledgements -- Contents -- Part I Introduction -- 1 State of the Art in Vascular Biometrics -- 1.1 Introduction -- 1.1.1 Imaging Hand-Based Vascular Biometric Traits -- 1.1.2 Imaging Eye-Based Vascular Biometric Traits -- 1.1.3 Pros and Cons of Vascular Biometric Traits -- 1.2 Commercial Sensors and Systems -- 1.2.1 Hand-Based Vascular Traits -- 1.2.2 Eye-Based Vascular Traits -- 1.3 Algorithms in the Recognition Toolchain -- 1.3.1 Finger Vein Recognition Toolchain -- 1.3.2 Palm Vein Recognition Toolchain -- 1.3.3 (Dorsal) Hand Vein Recognition Toolchain -- 1.3.4 Wrist Vein Recognition Toolchain -- 1.3.5 Retina Recognition Toolchain -- 1.3.6 Sclera Recognition Toolchain -- 1.4 Datasets, Competitions and Open-Source Software -- 1.4.1 Hand-Based Vascular Traits -- 1.4.2 Eye-Based Vascular Traits -- 1.5 Template Protection -- 1.5.1 Hand-Based Vascular Traits -- 1.5.2 Eye-Based Vascular Traits -- 1.6 Presentation Attacks and Detection, and Sample Quality -- 1.6.1 Presentation Attack Detection -- 1.6.2 Biometric Sample Quality-Hand-Based Vascular Traits -- 1.6.3 Biometric Sample Quality-Eye-Based Vascular Traits -- 1.7 Mobile and On-the-Move Acquisition -- 1.7.1 Hand-Based Vascular Traits -- 1.7.2 Eye-Based Vascular Traits -- 1.8 Disease Impact on Recognition and (Template) Privacy -- 1.9 Conclusion and Outlook -- References -- 2 A High-Quality Finger Vein Dataset Collected Using a Custom-Designed Capture Device -- 2.1 Introduction -- 2.2 Overview of Finger Vein Acquisition Systems -- 2.2.1 Types of Sensors -- 2.2.2 Commercial Sensors -- 2.2.3 Sensors Developed by Academics.
2.3 University of Twente Finger Vein Capture Device -- 2.4 Description of Dataset -- 2.5 Results -- 2.5.1 Performance Analysis -- 2.6 Next-Generation Finger Vein Scanner -- 2.6.1 Overview -- 2.6.2 Illumination Control -- 2.6.3 3D Reconstruction -- 2.7 Conclusions -- 2.8 Future Work -- References -- 3 OpenVein-An Open-Source Modular Multipurpose Finger Vein Scanner Design -- 3.1 Introduction -- 3.2 Finger Vein Scanners -- 3.2.1 Light Source Positioning -- 3.2.2 Two Main Perspectives of the Finger-Dorsal and Palmar -- 3.2.3 Commercial Finger Vein Scanners -- 3.2.4 Finger Vein Prototype Scanners and Datasets in Research -- 3.3 PLUS OpenVein Finger Vein Scanner -- 3.3.1 Advantages and Differences to Existing Designs -- 3.3.2 Image Sensor, Lens and Additional Filter -- 3.3.3 Light Transmission Illuminator -- 3.3.4 Reflected Light Illuminator -- 3.3.5 Illuminator Brightness Control Board -- 3.3.6 Finger Placement Unit -- 3.3.7 Housing Parts -- 3.3.8 Capturing Software -- 3.4 PLUSVein-FV3 Finger Vein Dataset -- 3.5 Conclusion -- 3.5.1 Future Work -- References -- 4 An Available Open-Source Vein Recognition Framework -- 4.1 Introduction -- 4.2 Related Work -- 4.3 PLUS OpenVein Toolkit -- 4.3.1 Directory Structure -- 4.3.2 Settings Files -- 4.3.3 External Dependencies -- 4.4 Included Vein Recognition Schemes -- 4.4.1 Input File Handling/Supported Datasets -- 4.4.2 Preprocessing -- 4.4.3 Feature Extraction -- 4.4.4 Comparison -- 4.4.5 Comparison/Evaluation Protocols -- 4.4.6 Performance Evaluation Tools -- 4.4.7 Feature and Score-Level Fusion -- 4.5 Experimental Example -- 4.5.1 Dataset and Experimental Set-Up -- 4.5.2 Experimental Results -- 4.6 Conclusion and Future Work -- References -- Part II Hand and Finger Vein Biometrics -- 5 Use Case of Palm Vein Authentication -- 5.1 Introduction -- 5.2 Palm Vein Sensing -- 5.3 Sensor Products with Reflection Method.
5.4 Matching Performance -- 5.5 Use Cases of Palm Vein Authentication -- 5.5.1 Usage Situation -- 5.5.2 Login Authentication -- 5.5.3 Physical Access Control Systems -- 5.5.4 Payment Systems -- 5.5.5 Financial Services -- 5.5.6 Health Care -- 5.5.7 Airport Security -- 5.5.8 Government and Municipal -- 5.6 Conclusion -- References -- 6 Evolution of Finger Vein Biometric Devices in Terms of Usability -- 6.1 Introduction -- 6.1.1 Early Implementation -- 6.1.2 Commercialisation -- 6.1.3 Evolutions of the Finger Vein Biometric Devices -- 6.2 Compliance with Regulations -- 6.2.1 Use Case/Background -- 6.2.2 Usability Requirement Details -- 6.2.3 Challenges -- 6.2.4 Implementation -- 6.3 Compactness -- 6.3.1 Use Case/Background -- 6.3.2 Usability Requirement Details -- 6.3.3 Challenges -- 6.3.4 Implementation -- 6.4 Portability and Mobility -- 6.4.1 Use Case/Background -- 6.4.2 Usability Requirement Details -- 6.4.3 Challenges -- 6.4.4 Implementation -- 6.5 Universal Design -- 6.5.1 Use Case/Background -- 6.5.2 Usability Requirement Details -- 6.5.3 Challenges -- 6.5.4 Implementation -- 6.6 Durability and Anti-vandalism -- 6.6.1 Use Case/Background -- 6.6.2 Usability Requirement Details -- 6.6.3 Challenges -- 6.6.4 Implementation -- 6.7 High Throughput -- 6.7.1 Use Case/Background -- 6.7.2 Usability Requirement Details -- 6.7.3 Challenges -- 6.7.4 Implementation -- 6.8 Universality/Availability -- 6.8.1 Use Case/Background -- 6.8.2 Usability Requirement Details -- 6.8.3 Challenges -- 6.8.4 Implementation -- 6.9 Summary -- References -- 7 Towards Understanding Acquisition Conditions Influencing Finger Vein Recognition -- 7.1 Introduction -- 7.2 Varying Acquisition Conditions-A Challenging Aspect in Research and Practical Applications -- 7.3 Deployed Scanner Devices -- 7.4 Finger Vein Acquisition Conditions Dataset.
7.5 Finger Vein Recognition Toolchain and Evaluation Protocol -- 7.6 Experimental Results Analysis -- 7.7 Conclusion -- References -- 8 Improved CNN-Segmentation-Based Finger Vein Recognition Using Automatically Generated and Fused Training Labels -- 8.1 Introduction -- 8.2 Related Works -- 8.2.1 Classical Finger Vein Recognition Techniques -- 8.2.2 CNN-Based Finger Vein Recognition -- 8.2.3 Automated Generation of CNN Training Data -- 8.3 Finger Vein Pattern Extraction Using CNNs -- 8.4 Training Label Generation and Setups -- 8.5 Experimental Framework -- 8.6 Results -- 8.7 Discussion -- 8.8 Conclusion -- References -- 9 Efficient Identification in Large-Scale Vein Recognition Systems Using Spectral Minutiae Representations -- 9.1 Introduction -- 9.1.1 Organisation -- 9.1.2 Workload Reduction in Vein Identification Systems -- 9.1.3 Concept Focus -- 9.2 Workload Reduction Concepts -- 9.2.1 Efficient Data Representation -- 9.2.2 Serial Combination of SMR -- 9.2.3 Indexing Methods -- 9.2.4 Hardware Acceleration -- 9.2.5 Fusion of Concepts -- 9.3 Experiments -- 9.3.1 Experimental Setup -- 9.3.2 Performance Evaluation -- 9.3.3 Experiments Overview -- 9.4 Results -- 9.4.1 Spectral Minutiae Representation -- 9.4.2 Binary Spectral Minutiae Representation -- 9.4.3 Serial Combination of SMR -- 9.4.4 Indexing Methods -- 9.4.5 Fusion of Concepts -- 9.4.6 Discussion -- 9.5 Summary -- References -- 10 Different Views on the Finger--- Score-Level Fusion in Multi-Perspective Finger Vein Recognition -- 10.1 Introduction -- 10.2 Multi-perspective Finger Vein Biometrics -- 10.3 Multi-perspective Finger Vein Capture Device -- 10.4 Multi-perspective Finger Vein Dataset -- 10.5 Biometric Fusion -- 10.5.1 Fusion in Finger Vein Recognition -- 10.6 Experimental Analysis -- 10.6.1 Finger Vein Dataset -- 10.6.2 Finger Vein Recognition Tool chain.
10.6.3 Score-Level Fusion Strategy and Toolkit -- 10.6.4 Evaluation Protocol -- 10.6.5 Single Perspective Performance Results -- 10.6.6 Multi-perspective Fusion Results -- 10.6.7 Multi-algorithm Fusion Results -- 10.6.8 Combined Multi-perspective and Multi-algorithm Fusion -- 10.6.9 Results Discussion -- 10.7 Conclusion and Future Work -- References -- Part III Sclera and Retina Biometrics -- 11 Retinal Vascular Characteristics -- 11.1 Introduction -- 11.1.1 Anatomy of the Retina -- 11.1.2 History of Retinal Recognition -- 11.1.3 Medical and Biometric Examination and Acquisition Tools -- 11.1.4 Recognition Schemes -- 11.1.5 Achieved Results Using Our Scheme -- 11.1.6 Limitations -- 11.2 Eye Diseases -- 11.2.1 Automatic Detection of Druses and Exudates -- 11.2.2 Testing -- 11.3 Biometric Information Amounts in the Retina -- 11.3.1 Theoretical Determination of Biometric Information in Retina -- 11.3.2 Used Databases and Applications -- 11.3.3 Results -- 11.4 Synthetic Retinal Images -- 11.4.1 Vascular Bed Layer -- 11.4.2 Layers -- 11.4.3 Background Layers -- 11.4.4 Generating a Vascular Bed -- 11.4.5 Testing -- 11.4.6 Generating Synthetic Images Via Neural Network -- References -- 12 Vascular Biometric Graph Comparison: Theory and Performance -- 12.1 Introduction -- 12.2 The Biometric Graph -- 12.2.1 The Biometric Graph -- 12.2.2 Biometric Graph Extraction -- 12.3 The Biometric Graph Comparison Algorithm -- 12.3.1 BGR-Biometric Graph Registration -- 12.3.2 BGC-Biometric Graph Comparison -- 12.4 Results -- 12.4.1 Vascular Databases -- 12.4.2 Comparison of Graph Topology Across Databases -- 12.4.3 Comparison of MCS Topology in BGC -- 12.4.4 Comparison of BGC Performance Across Databases -- 12.5 Anchors for a BGC Approach to Template Protection -- 12.5.1 Dissimilarity Vector Templates for Biometric Graphs -- 12.5.2 Anchors for Registration.
12.5.3 The Search for Anchors.
isbn 9783030277314
9783030277307
callnumber-first T - Technology
callnumber-subject TK - Electrical and Nuclear Engineering
callnumber-label TK7882
callnumber-sort TK 47882 B56
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5978038
illustrated Not Illustrated
oclc_num 1128096156
work_keys_str_mv AT uhlandreas handbookofvascularbiometrics
AT buschchristoph handbookofvascularbiometrics
AT marcelsebastien handbookofvascularbiometrics
AT veldhuisraymond handbookofvascularbiometrics
status_str n
ids_txt_mv (MiAaPQ)5005978038
(Au-PeEL)EBL5978038
(OCoLC)1128096156
carrierType_str_mv cr
hierarchy_parent_title Advances in Computer Vision and Pattern Recognition Series
is_hierarchy_title Handbook of Vascular Biometrics.
container_title Advances in Computer Vision and Pattern Recognition Series
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331057023942656
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11221nam a22004933i 4500</leader><controlfield tag="001">5005978038</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073833.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2019 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030277314</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030277307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5005978038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL5978038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1128096156</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK7882.B56</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Uhl, Andreas.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of Vascular Biometrics.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (535 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advances in Computer Vision and Pattern Recognition Series</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Foreword -- Preface -- Objectives -- Audience -- Organisation -- Part I: Introduction -- Part II: Hand and Finger Vein Biometrics -- Part III: Sclera and Retina Biometrics -- Part IV: Security and Privacy in Vascular Biometrics -- Acknowledgements -- Contents -- Part I Introduction -- 1 State of the Art in Vascular Biometrics -- 1.1 Introduction -- 1.1.1 Imaging Hand-Based Vascular Biometric Traits -- 1.1.2 Imaging Eye-Based Vascular Biometric Traits -- 1.1.3 Pros and Cons of Vascular Biometric Traits -- 1.2 Commercial Sensors and Systems -- 1.2.1 Hand-Based Vascular Traits -- 1.2.2 Eye-Based Vascular Traits -- 1.3 Algorithms in the Recognition Toolchain -- 1.3.1 Finger Vein Recognition Toolchain -- 1.3.2 Palm Vein Recognition Toolchain -- 1.3.3 (Dorsal) Hand Vein Recognition Toolchain -- 1.3.4 Wrist Vein Recognition Toolchain -- 1.3.5 Retina Recognition Toolchain -- 1.3.6 Sclera Recognition Toolchain -- 1.4 Datasets, Competitions and Open-Source Software -- 1.4.1 Hand-Based Vascular Traits -- 1.4.2 Eye-Based Vascular Traits -- 1.5 Template Protection -- 1.5.1 Hand-Based Vascular Traits -- 1.5.2 Eye-Based Vascular Traits -- 1.6 Presentation Attacks and Detection, and Sample Quality -- 1.6.1 Presentation Attack Detection -- 1.6.2 Biometric Sample Quality-Hand-Based Vascular Traits -- 1.6.3 Biometric Sample Quality-Eye-Based Vascular Traits -- 1.7 Mobile and On-the-Move Acquisition -- 1.7.1 Hand-Based Vascular Traits -- 1.7.2 Eye-Based Vascular Traits -- 1.8 Disease Impact on Recognition and (Template) Privacy -- 1.9 Conclusion and Outlook -- References -- 2 A High-Quality Finger Vein Dataset Collected Using a Custom-Designed Capture Device -- 2.1 Introduction -- 2.2 Overview of Finger Vein Acquisition Systems -- 2.2.1 Types of Sensors -- 2.2.2 Commercial Sensors -- 2.2.3 Sensors Developed by Academics.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 University of Twente Finger Vein Capture Device -- 2.4 Description of Dataset -- 2.5 Results -- 2.5.1 Performance Analysis -- 2.6 Next-Generation Finger Vein Scanner -- 2.6.1 Overview -- 2.6.2 Illumination Control -- 2.6.3 3D Reconstruction -- 2.7 Conclusions -- 2.8 Future Work -- References -- 3 OpenVein-An Open-Source Modular Multipurpose Finger Vein Scanner Design -- 3.1 Introduction -- 3.2 Finger Vein Scanners -- 3.2.1 Light Source Positioning -- 3.2.2 Two Main Perspectives of the Finger-Dorsal and Palmar -- 3.2.3 Commercial Finger Vein Scanners -- 3.2.4 Finger Vein Prototype Scanners and Datasets in Research -- 3.3 PLUS OpenVein Finger Vein Scanner -- 3.3.1 Advantages and Differences to Existing Designs -- 3.3.2 Image Sensor, Lens and Additional Filter -- 3.3.3 Light Transmission Illuminator -- 3.3.4 Reflected Light Illuminator -- 3.3.5 Illuminator Brightness Control Board -- 3.3.6 Finger Placement Unit -- 3.3.7 Housing Parts -- 3.3.8 Capturing Software -- 3.4 PLUSVein-FV3 Finger Vein Dataset -- 3.5 Conclusion -- 3.5.1 Future Work -- References -- 4 An Available Open-Source Vein Recognition Framework -- 4.1 Introduction -- 4.2 Related Work -- 4.3 PLUS OpenVein Toolkit -- 4.3.1 Directory Structure -- 4.3.2 Settings Files -- 4.3.3 External Dependencies -- 4.4 Included Vein Recognition Schemes -- 4.4.1 Input File Handling/Supported Datasets -- 4.4.2 Preprocessing -- 4.4.3 Feature Extraction -- 4.4.4 Comparison -- 4.4.5 Comparison/Evaluation Protocols -- 4.4.6 Performance Evaluation Tools -- 4.4.7 Feature and Score-Level Fusion -- 4.5 Experimental Example -- 4.5.1 Dataset and Experimental Set-Up -- 4.5.2 Experimental Results -- 4.6 Conclusion and Future Work -- References -- Part II Hand and Finger Vein Biometrics -- 5 Use Case of Palm Vein Authentication -- 5.1 Introduction -- 5.2 Palm Vein Sensing -- 5.3 Sensor Products with Reflection Method.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4 Matching Performance -- 5.5 Use Cases of Palm Vein Authentication -- 5.5.1 Usage Situation -- 5.5.2 Login Authentication -- 5.5.3 Physical Access Control Systems -- 5.5.4 Payment Systems -- 5.5.5 Financial Services -- 5.5.6 Health Care -- 5.5.7 Airport Security -- 5.5.8 Government and Municipal -- 5.6 Conclusion -- References -- 6 Evolution of Finger Vein Biometric Devices in Terms of Usability -- 6.1 Introduction -- 6.1.1 Early Implementation -- 6.1.2 Commercialisation -- 6.1.3 Evolutions of the Finger Vein Biometric Devices -- 6.2 Compliance with Regulations -- 6.2.1 Use Case/Background -- 6.2.2 Usability Requirement Details -- 6.2.3 Challenges -- 6.2.4 Implementation -- 6.3 Compactness -- 6.3.1 Use Case/Background -- 6.3.2 Usability Requirement Details -- 6.3.3 Challenges -- 6.3.4 Implementation -- 6.4 Portability and Mobility -- 6.4.1 Use Case/Background -- 6.4.2 Usability Requirement Details -- 6.4.3 Challenges -- 6.4.4 Implementation -- 6.5 Universal Design -- 6.5.1 Use Case/Background -- 6.5.2 Usability Requirement Details -- 6.5.3 Challenges -- 6.5.4 Implementation -- 6.6 Durability and Anti-vandalism -- 6.6.1 Use Case/Background -- 6.6.2 Usability Requirement Details -- 6.6.3 Challenges -- 6.6.4 Implementation -- 6.7 High Throughput -- 6.7.1 Use Case/Background -- 6.7.2 Usability Requirement Details -- 6.7.3 Challenges -- 6.7.4 Implementation -- 6.8 Universality/Availability -- 6.8.1 Use Case/Background -- 6.8.2 Usability Requirement Details -- 6.8.3 Challenges -- 6.8.4 Implementation -- 6.9 Summary -- References -- 7 Towards Understanding Acquisition Conditions Influencing Finger Vein Recognition -- 7.1 Introduction -- 7.2 Varying Acquisition Conditions-A Challenging Aspect in Research and Practical Applications -- 7.3 Deployed Scanner Devices -- 7.4 Finger Vein Acquisition Conditions Dataset.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.5 Finger Vein Recognition Toolchain and Evaluation Protocol -- 7.6 Experimental Results Analysis -- 7.7 Conclusion -- References -- 8 Improved CNN-Segmentation-Based Finger Vein Recognition Using Automatically Generated and Fused Training Labels -- 8.1 Introduction -- 8.2 Related Works -- 8.2.1 Classical Finger Vein Recognition Techniques -- 8.2.2 CNN-Based Finger Vein Recognition -- 8.2.3 Automated Generation of CNN Training Data -- 8.3 Finger Vein Pattern Extraction Using CNNs -- 8.4 Training Label Generation and Setups -- 8.5 Experimental Framework -- 8.6 Results -- 8.7 Discussion -- 8.8 Conclusion -- References -- 9 Efficient Identification in Large-Scale Vein Recognition Systems Using Spectral Minutiae Representations -- 9.1 Introduction -- 9.1.1 Organisation -- 9.1.2 Workload Reduction in Vein Identification Systems -- 9.1.3 Concept Focus -- 9.2 Workload Reduction Concepts -- 9.2.1 Efficient Data Representation -- 9.2.2 Serial Combination of SMR -- 9.2.3 Indexing Methods -- 9.2.4 Hardware Acceleration -- 9.2.5 Fusion of Concepts -- 9.3 Experiments -- 9.3.1 Experimental Setup -- 9.3.2 Performance Evaluation -- 9.3.3 Experiments Overview -- 9.4 Results -- 9.4.1 Spectral Minutiae Representation -- 9.4.2 Binary Spectral Minutiae Representation -- 9.4.3 Serial Combination of SMR -- 9.4.4 Indexing Methods -- 9.4.5 Fusion of Concepts -- 9.4.6 Discussion -- 9.5 Summary -- References -- 10 Different Views on the Finger--- Score-Level Fusion in Multi-Perspective Finger Vein Recognition -- 10.1 Introduction -- 10.2 Multi-perspective Finger Vein Biometrics -- 10.3 Multi-perspective Finger Vein Capture Device -- 10.4 Multi-perspective Finger Vein Dataset -- 10.5 Biometric Fusion -- 10.5.1 Fusion in Finger Vein Recognition -- 10.6 Experimental Analysis -- 10.6.1 Finger Vein Dataset -- 10.6.2 Finger Vein Recognition Tool chain.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.6.3 Score-Level Fusion Strategy and Toolkit -- 10.6.4 Evaluation Protocol -- 10.6.5 Single Perspective Performance Results -- 10.6.6 Multi-perspective Fusion Results -- 10.6.7 Multi-algorithm Fusion Results -- 10.6.8 Combined Multi-perspective and Multi-algorithm Fusion -- 10.6.9 Results Discussion -- 10.7 Conclusion and Future Work -- References -- Part III Sclera and Retina Biometrics -- 11 Retinal Vascular Characteristics -- 11.1 Introduction -- 11.1.1 Anatomy of the Retina -- 11.1.2 History of Retinal Recognition -- 11.1.3 Medical and Biometric Examination and Acquisition Tools -- 11.1.4 Recognition Schemes -- 11.1.5 Achieved Results Using Our Scheme -- 11.1.6 Limitations -- 11.2 Eye Diseases -- 11.2.1 Automatic Detection of Druses and Exudates -- 11.2.2 Testing -- 11.3 Biometric Information Amounts in the Retina -- 11.3.1 Theoretical Determination of Biometric Information in Retina -- 11.3.2 Used Databases and Applications -- 11.3.3 Results -- 11.4 Synthetic Retinal Images -- 11.4.1 Vascular Bed Layer -- 11.4.2 Layers -- 11.4.3 Background Layers -- 11.4.4 Generating a Vascular Bed -- 11.4.5 Testing -- 11.4.6 Generating Synthetic Images Via Neural Network -- References -- 12 Vascular Biometric Graph Comparison: Theory and Performance -- 12.1 Introduction -- 12.2 The Biometric Graph -- 12.2.1 The Biometric Graph -- 12.2.2 Biometric Graph Extraction -- 12.3 The Biometric Graph Comparison Algorithm -- 12.3.1 BGR-Biometric Graph Registration -- 12.3.2 BGC-Biometric Graph Comparison -- 12.4 Results -- 12.4.1 Vascular Databases -- 12.4.2 Comparison of Graph Topology Across Databases -- 12.4.3 Comparison of MCS Topology in BGC -- 12.4.4 Comparison of BGC Performance Across Databases -- 12.5 Anchors for a BGC Approach to Template Protection -- 12.5.1 Dissimilarity Vector Templates for Biometric Graphs -- 12.5.2 Anchors for Registration.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.5.3 The Search for Anchors.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Busch, Christoph.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marcel, Sébastien.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Veldhuis, Raymond.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Uhl, Andreas</subfield><subfield code="t">Handbook of Vascular Biometrics</subfield><subfield code="d">Cham : Springer International Publishing AG,c2019</subfield><subfield code="z">9783030277307</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advances in Computer Vision and Pattern Recognition Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5978038</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>