Make Life Visible.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2019.
©2020.
Year of Publication:2019
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (285 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Part I: Visualizing and Controlling Molecules for Life
  • Chapter 1: Photoacoustic Tomography: Deep Tissue Imaging by Ultrasonically Beating Optical Diffusion
  • Chapter 2: Regulatory Mechanism of Neural Progenitor Cells Revealed by Optical Manipulation of Gene Expressions
  • References
  • Chapter 3: Eavesdropping on Biological Processes with Multi-dimensional Molecular Imaging
  • 3.1 Intravital Imaging
  • 3.2 Volumetric Cardiac Imaging in Embryonic Zebrafish
  • 3.2.1 Zebrafish As a Model System for Cardiovascular Research
  • 3.2.2 Cardiac Development: Symbiosis of Function and Form
  • 3.2.3 Cardiac Imaging Is a 4-Dimensional Challenge
  • 3.2.4 Principles of Cardiac Gated Imaging in Zebrafish
  • 3.2.4.1 Prospective Gating
  • 3.2.4.2 Retrospective Gating
  • 3.2.4.3 Macroscopic Phase Stamping
  • 3.3 Large Scale In Vivo Brain Imaging with Two-Photon Light-Sheet Microscopy
  • 3.3.1 Brain Activity Monitoring in Behaving Zebrafish
  • 3.3.2 Principles and Successes of Light-Sheet Microscopy for Zebrafish Brain Imaging
  • 3.4 Conclusion
  • References
  • Chapter 4: Apical Cytoskeletons Help Define the Barrier Functions of Epithelial Cell Sheets in Biological Systems
  • 4.1 Introduction
  • 4.2 The Apical Cytoskeletons in General Epithelial Cells
  • 4.3 The Apical Cytoskeletons in Multiciliated Cells, a Possible Extreme Example of a "TJ-Apical Complex" with a Clear Function
  • 4.4 Perspective
  • References
  • Chapter 5: Neural Circuit Dynamics of Brain States
  • References
  • Online Resources
  • Chapter 6: Optogenetic Reconstitution: Light-Induced Assembly of Protein Complexes and Simultaneous Visualization of Their Intracellular Functions
  • 6.1 Introduction
  • 6.2 Light-Induced Heterodimerization Tools
  • 6.3 Visualization Tools Compatible with Optogenetic Manipulation.
  • 6.4 Light-Induced Assembly/Reconstitution of Force-Generating Complexes During Mitosis
  • 6.5 Perspectives
  • References
  • Chapter 7: 19F MRI Probes with Tunable Chemical Switches
  • 7.1 Magnetic Resonance Imaging
  • 7.2 Perfluorocarbon Encapsulated in Silica Nanoparticle (FLAME)
  • 7.3 Paramagnetic Relaxation Enhancement (PRE) Effect
  • 7.4 Gadolinium Based-19F MRI Nanoprobe for Monitoring Reducing Environment
  • References
  • Chapter 8: Circuit-Dependent Striatal PKA and ERK Signaling Underlying Action Selection
  • References
  • Chapter 9: Making Life Visible: Fluorescent Indicators to Probe Membrane Potential
  • 9.1 Introduction
  • 9.2 Rational Design of VoltageFluor Dyes
  • 9.3 Voltage Imaging with Red-Shifted Dyes
  • 9.4 Far-Red Voltage Imaging for High Sensitivity
  • 9.5 Accessing Two-Photon Infrared Excitation for Imaging in Thick Brain Tissue
  • 9.6 Targeting VoltageFluor Dyes to Specific Cells
  • 9.7 Conclusion/Summary
  • References
  • Chapter 10: Molecular Dynamics Revealed by Single-Molecule FRET Measurement
  • 10.1 Single-Molecule Fluorescence Imaging
  • 10.2 Molecular Dynamics of Proteins Measured by smFRET
  • 10.3 Advances in smFRET Methods
  • 10.4 Conclusion
  • References
  • Chapter 11: Comprehensive Approaches Using Luminescence to Studies of Cellular Functions
  • 11.1 &lt
  • Fluoppi&gt
  • 11.2 &lt
  • Fucci&gt
  • 11.3 &lt
  • GEPRA&gt
  • 11.4 &lt
  • UnaG&gt
  • References
  • Part II: Imaging Disease Mechanisms
  • Chapter 12: Making Chronic Pain Visible: Risks, Mechanisms, Consequences
  • 12.1 Summary Abstract for Presentation Delivered at Uehara Meeting, June 2017
  • Chapter 13: Visualization of the Pathological Changes After Spinal Cord Injury (-From Bench to Bed Side-)
  • 13.1 Diffusion Tensor Tractography
  • 13.1.1 Basic Research
  • 13.1.2 Clinical Significance of DTT
  • 13.2 Myelin Map
  • 13.2.1 Basic Research.
  • 13.2.2 Clinical Significance of Myelin Map
  • 13.3 Resting-State Functional MRI
  • References
  • Chapter 14: Multimodal Label-Free Imaging to Assess Compositional and Morphological Changes in Cells During Immune Activation
  • References
  • Chapter 15: Investigating In Vivo Myocardial and Coronary Molecular Pathophysiology in Mice with X-Ray Radiation Imaging Approaches
  • 15.1 Translating Imaging of Cardiac Function to Small Animals
  • 15.2 The Importance of the Microvessels in Sustaining Cardiac Function
  • 15.2.1 The Challenges Associated with Investigating Coronary Microvascular Function
  • 15.2.2 Protocols for Assessment of Coronary Endothelial Function
  • 15.3 Progress in Vascular Imaging of Small Animals with Lab Systems
  • 15.4 Application of In Vivo SAXS to the Study of Myocardial Function in Mice
  • References
  • Chapter 16: Visualizing the Immune Response to Infections
  • Chapter 17: Imaging Sleep and Wakefulness
  • 17.1 Introduction: Behavioral Definition of Sleep
  • 17.2 Oscillations in Sleep
  • 17.3 Electrophysiological Insights into the Sleeping Brain
  • 17.4 Imaging Techniques Show Novel Aspects of Sleep
  • 17.5 Future Directions
  • References
  • Chapter 18: Abnormal Local Translation in Dendrites Impairs Cognitive Functions in Neuropsychiatric Disorders
  • 18.1 Introduction
  • 18.2 Results
  • 18.2.1 TDP-43 Forms Co-Aggregates with DISC1 in Neurons
  • 18.2.2 Role of DISC1 in Local Translation in Dendrites
  • 18.2.3 TDP-43-DISC1 Co-Aggregation Inhibits Local Translation in Dendrites
  • 18.2.4 DISC1-Dependent Behavioral Impairment and Rescue in TDP-220C Mice
  • 18.3 Discussion
  • References
  • Chapter 19: Imaging Synapse Formation and Remodeling In Vitro and In Vivo
  • 19.1 Synapse, Neuron, and Neural Network
  • 19.2 In Vitro Imaging of Dynamic Synapses
  • 19.3 In Vivo Imaging of Dynamic Synapses.
  • 19.4 In Vivo Imaging of Neocortical Circuits in Mouse Models of Developmental Disorders
  • 19.5 Perspectives
  • References
  • Part III: Imaging-Based Diagnosis and Therapy
  • Chapter 20: How MRI Makes the Brain Visible
  • 20.1 Progress of Imaging to Investigate the Anatomy of the Brain
  • 20.2 Imaging Brain Function with Functional MRI (fMRI)
  • 20.3 Imaging Brain Tissue Microstructure with Diffusion MRI (dMRI)
  • 20.4 Future of MRI
  • References
  • Chapter 21: Application of Imaging Technology to Humans
  • 21.1 Introduction
  • 21.2 MPM Technique Enables to Visualize the Histological Features of Fresh, Unstained Human Colorectal Mucosa and Can Be Used for Histopathological Diagnoses
  • 21.3 Classification by Numerical Parameters Enables to Distinguish NL-MPM Images to Normal and Cancerous Tissues Quantitatively
  • 21.4 Conclusion
  • References
  • Chapter 22: Theranostic Near-Infrared Photoimmunotherapy
  • 22.1 Introduction
  • 22.2 NIR-PIT Can Selectively Kill Various Cancer Cells
  • 22.3 NIR-PIT Rapidly Enhances Nano-Drug Delivery
  • 22.4 NIR-PIT Initiates Anti-Tumor Host Immunity and Promotes Rapid Healing
  • 22.5 Targeting Systemic Metastases
  • 22.6 Perspective
  • References
  • Chapter 23: Integrated Imaging on Fatigue and Chronic Fatigue
  • 23.1 Introduction
  • 23.2 Integrated Imaging Studies
  • 23.3 PET Studies
  • 23.4 MRI Morphometry
  • 23.5 fMRI Study
  • 23.6 MEG Study
  • References
  • Chapter 24: Development of Novel Fluorogenic Probes for Realizing Rapid Intraoperative Multi-color Imaging of Tiny Tumors
  • 24.1 Rational Design of Organic Fluorogenic Probes Based on Unique Spirocyclization of Rhodamines by the Intramolecular Hydroxymethyl Group
  • 24.2 Development of Novel Fluorogenic Green Probes for Biological and Medical Purposes, Especially for Intraoperative Rapid Tumor Imaging.
  • 24.3 Development of Novel Fluorogenic Scaffold for Detecting Protease Activity in Longer Wavelength by Optimizing the Spirocyclization Properties: Novel Strategy for Fluorescence-Assisted Surgery with Multicolor Protease Imaging (Iwatate et al. 2016
  • 24.4 Conclusion
  • References
  • Chapter 25: Coronary Heart Disease Diagnosis by FFRCT: Engineering Triumphs and Value Chain Analysis
  • 25.1 Coronary Heart Disease Pathophysiology
  • 25.2 Invasive Coronary Angiography Is Inefficient
  • 25.3 Fractional Flow Reserve
  • 25.4 CT Angiography
  • 25.5 Comparing Costs
  • 25.6 Economic Considerations for Translation to Routine Care
  • 25.7 Conclusion
  • References
  • Chapter 26: Live Imaging of the Skin Immune Responses
  • 26.1 Introduction
  • 26.2 The Skin and Its Key Immune Cells
  • 26.2.1 Dendritic Cells
  • 26.2.2 Neutrophils
  • 26.2.3 Macrophages
  • 26.2.4 Mast Cells
  • 26.2.5 T Cells
  • 26.3 Tools for In Vivo Imaging
  • 26.3.1 Microscopy
  • 26.3.2 Animal Systems and Fluorescent-Cell Labelling Techniques
  • 26.4 In vivo Imaging of Skin Immune Responses
  • 26.4.1 Sterile Injury
  • 26.4.2 Contact Hypersensitivity
  • 26.4.3 Infection
  • 26.4.4 Cancer
  • 26.5 Concluding Remarks - Looking Ahead to the Future
  • References
  • Chapter 27: Development of Upright CT and Its Initial Evaluation: Effect of Gravity on Human Body and Potential Clinical Application
  • 27.1 X-Ray Imaging of the Human Body
  • 27.2 Cross-Sectional Imaging of Human Body
  • 27.3 Development of Upright CT
  • 27.4 Physical Properties and Clinical Data Analysis
  • References
  • Chapter 28: The Future of Precision Health &amp
  • Integrated Diagnostics
  • Reference
  • Chapter 29: Imaging and Therapy Against Hypoxic Tumors with 64Cu-ATSM
  • 29.1 Radiolabeled Cu-ATSM as a Hypoxia Imaging Agent for PET
  • 29.2 64Cu-ATSM as a Theranostic Agent
  • 29.3 64Cu-ATSM Theranostics for Cancer Stem Cells.
  • 29.4 Biodistribution and Dosimetry of 64Cu-ATSM.