Flowing Matter.

Saved in:
Bibliographic Details
Superior document:Soft and Biological Matter Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2019.
Ã2019.
Year of Publication:2019
Edition:1st ed.
Language:English
Series:Soft and Biological Matter Series
Online Access:
Physical Description:1 online resource (313 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • 1 Numerical Approaches to Complex Fluids
  • 1.1 Introduction to Complex Fluids and Rheology
  • 1.2 Macroscopic Approaches
  • 1.2.1 Eulerian/Eulerian Methods
  • Inelastic Shear-Thinning/Thickening Fluids
  • Viscoelastic Fluids
  • Plastic Effects
  • Fluid-Structure Interaction
  • 1.3 Microscopic Approaches
  • 1.3.1 Eulerian/Lagrangian Methods
  • Immersed Boundary Methods for Suspensions of Rigid Particles
  • Front-Tracking Methods for Suspensions of Deformable Droplets
  • 1.3.2 Eulerian/Eulerian Methods
  • Volume of Fluids
  • Level-Set Method
  • Phase-Field Methods
  • 1.3.3 Other Approaches
  • 1.4 Conclusions
  • References
  • 2 Basic Concepts of Stokes Flows
  • 2.1 Introduction
  • 2.2 Navier-Stokes and Stokes Equations
  • 2.2.1 Navier-Stokes Equations
  • 2.2.2 Stokes Flows
  • 2.3 Reversibility of Fluid Flows
  • 2.3.1 Examples of Reversibility
  • 2.3.2 Irreversible Trajectories in Stokes Flow
  • 2.4 Minimum Energy Dissipation Theorem
  • 2.4.1 Statement
  • 2.4.2 An Application of the Minimum Energy Dissipation Theorem
  • 2.5 Limits of the Stokes Approximation
  • 2.5.1 Example of a System Where the Stokes Approximation Does Not Work
  • Other Linear Flow Equations
  • 2.5.2 Departures from Reversibility Caused by Inertia
  • 2.5.3 Accelerating Fluid Example
  • 2.6 Conclusions
  • References
  • 3 Mesoscopic Approach to Nematic Fluids
  • 3.1 Introduction to Nematic Fluids
  • 3.2 Nematic Order Parameters
  • 3.3 Landau-de Gennes Free Energy Approach
  • 3.3.1 Landau Theory of Nematic Phase Transition
  • 3.3.2 Elastic Free Energy
  • 3.3.3 Surface Anchoring
  • 3.3.4 Electric Field Effects
  • 3.3.5 Magnetic Field Effects
  • 3.4 Topological Defects
  • 3.4.1 Umbilic Defects
  • 3.4.2 Basics of Topological Theory of Defects
  • 3.5 Nematodynamics
  • 3.5.1 Ericksen Stress Tensor
  • 3.5.2 Ericksen-Leslie-Parodi Approach.
  • 3.5.3 Beris-Edwards Model
  • 3.5.4 Qian-Sheng Model
  • 3.5.5 Towards Active Nematics
  • 3.6 Nematic Microfluidics
  • 3.6.1 Nematic Flows in Channels
  • 3.6.2 Nematic Microfluidic Junctions
  • 3.6.3 Colloidal Particles in Nematic Microfluidic Environment
  • 3.7 Nematic Colloids
  • 3.7.1 Single Spherical Particle
  • 3.7.2 Interparticle Interactions
  • 3.7.3 Assembly and Self-assembly of Colloidal Structures
  • 3.7.4 Complex-Shaped and Topological Colloids
  • 3.8 Conclusions
  • References
  • 4 Amphiphilic Janus Particles at Interfaces
  • Acronyms
  • 4.1 Introduction
  • 4.2 Short History of Asymmetric Janus Particles
  • 4.3 General Synthetic Routes
  • 4.3.1 Masking and Asymmetric Modification
  • 4.3.2 Seeded Emulsion Polymerisation and Phase Separation
  • 4.3.3 Microfluidic and Capillary Electro-Jetting Methods
  • 4.3.4 Polymer Co-precipitation and Phase Separation
  • 4.4 Tuning the Surface Polarity in JPs
  • 4.5 Interfacial Activity and Adsorption at Interfaces
  • 4.5.1 Contact Angle and Interfacial Adsorption Energies of HPs vs. JPs
  • 4.5.2 Inter-Particle Interaction at Interfaces vs. Lowering the Interfacial Tension
  • 4.5.3 Activation and Adsorption Energies of JPs Spontaneously Adsorbing at Interfaces
  • 4.6 Pickering Emulsions: Arrested JPs at Interfaces
  • 4.7 Self-Assembly of Janus Particles
  • 4.8 JP-Based Nanomotors
  • 4.9 Conclusions
  • References
  • 5 Upscaling Flow and Transport Processes
  • 5.1 Introduction
  • 5.2 Flow Through Porous and Heterogeneous Media
  • 5.2.1 Darcy's Law
  • 5.2.2 Extensions of Darcy's Law
  • 5.2.3 Heterogeneous Media
  • 5.3 Macroscopic Transport Models
  • 5.3.1 Fickian Dispersion
  • 5.3.2 Anomalous Dispersion
  • Continuous Time Random Walks
  • Multi-Rate Mass Transfer
  • 5.3.3 Mixing and Chemical Reactions
  • Mixing, Diffusion and Dispersion
  • Chemical Reactions
  • 5.4 Multiphase and Surface Processes.
  • 5.4.1 Mass and Heat Transfer
  • From Surface Processes to Averaged Reaction Rates
  • 5.5 Conclusions
  • Appendix A: Homogenisation and Two-Scale Expansions
  • Appendix B: Volume/Ensemble Averaging
  • References
  • 6 Recent Developments in Particle Tracking Diagnosticsfor Turbulence Research
  • 6.1 Introduction
  • 6.2 A Model-Free Calibration Method
  • 6.2.1 Principle
  • 6.2.2 Practical Implementation
  • 6.2.3 Results: Comparison with Tsai Model
  • 6.2.4 Discussion
  • 6.3 Particle Tracking Algorithms
  • 6.3.1 Shadow Particle Tracking Velocimetry
  • Experimental Setup
  • The Trajectory Stereo-Matching Approach
  • Flow Measurements
  • 6.3.2 Improved Four-Frame Best Estimate
  • 6.4 Noise Reduction in Post-Processing Statistical Analysis
  • 6.4.1 Lagrangian Auto-Correlation Functions
  • Results
  • Discussion
  • 6.4.2 Eulerian Structure Functions
  • Method
  • Results
  • Discussion
  • 6.5 Conclusions
  • References
  • 7 Numerical Simulations of Active Brownian Particles
  • 7.1 Introduction
  • 7.2 Passive Brownian Motion
  • 7.3 Active Particles
  • 7.3.1 Active Brownian Motion
  • 7.3.2 Run-and-Tumble Motion
  • 7.3.3 Chiral Active Brownian Motion
  • 7.3.4 Gaussian Noise Reorientation Model
  • 7.4 More Complex Models
  • 7.4.1 Non-Spherical Particles
  • 7.4.2 External Fields
  • 7.4.3 Interacting Particles
  • 7.4.4 Multiplicative Noise
  • 7.5 Numerical Examples
  • 7.5.1 Living Crystals
  • 7.5.2 Colloids with Short-Range Aligning Interaction
  • 7.6 Conclusions
  • References
  • 8 Active Fluids Within the Unified Coloured Noise Approximation
  • 8.1 Introduction
  • 8.1.1 The Genesis of the UCNA Model of Active Particles
  • 8.2 The Unified Coloured Noise Approximation (UCNA)
  • 8.2.1 Kinetic Approach
  • 8.2.2 Stationary Solution in the Absence of Current
  • 8.2.3 Fox Approximation
  • 8.2.4 Entropy Production in UCNA
  • 8.2.5 H-Theorem.
  • 8.3 Born-Green-Yvon Hierarchy in the Steady State
  • 8.4 Active Pressure
  • 8.5 Velocity Correlations
  • 8.6 Simple Applications
  • 8.6.1 Active Elastic Dumbbells
  • 8.6.2 Pressure of N Noninteracting Active Particles Surrounded by Harshly Repulsive Walls
  • 8.7 Active Particles in a Time-Dependent Potential
  • 8.7.1 Effective Potential
  • 8.7.2 Dynamical UCNA and Particle Density Profile
  • 8.7.3 Average Drag Force
  • 8.8 Conclusions
  • Appendix 1: Entropy Production and Heat Flux in the GCN
  • Appendix 2: Absence of Detailed Balance Condition in the GCN
  • References
  • 9 Quadrature-Based Lattice Boltzmann Models for RarefiedGas Flow
  • 9.1 Introduction
  • 9.2 Generalities
  • 9.3 One-Dimensional Quadrature-Based LB Models
  • 9.3.1 Full-Range Gauss-Hermite Quadrature
  • 9.3.2 Half-Range Gauss-Hermite Quadrature
  • 9.4 LB Models in the Three-Dimensional Momentum Space
  • 9.4.1 Reduced Distributions
  • 9.4.2 Mixed Quadrature LB Models with Reduced Distribution Functions
  • 9.4.3 The Lattice Boltzmann Equation
  • 9.4.4 Non-Dimensionalisation Procedure
  • 9.5 Simulation Results
  • 9.5.1 Couette Flow Between Parallel Plates
  • 9.5.2 Force-Driven Poiseuille Flow Between Parallel Plates
  • 9.6 Conclusions
  • Appendix: Numerical Scheme
  • References
  • Index.