From Assessing to Conserving Biodiversity : : Conceptual and Practical Challenges.

Saved in:
Bibliographic Details
Superior document:History, Philosophy and Theory of the Life Sciences Series ; v.24
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2019.
©2019.
Year of Publication:2019
Edition:1st ed.
Language:English
Series:History, Philosophy and Theory of the Life Sciences Series
Online Access:
Physical Description:1 online resource (455 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • From Assessing to Conserving Biodiversity
  • Contents
  • About the Contributors
  • Part I: Estimating Biodiversity: Data Collection and Monitoring Challenges
  • Chapter 1: Biodiversity Healing
  • 1.1 Assessing and Diagnosing the Patient. Estimating Biodiversity: Data Collection and Monitoring Challenges
  • 1.2 Are We Taking Care of the Right Patient? Characterising Biodiversity: Beyond the Species Approach
  • 1.3 Treating the Patient. Conserving Biodiversity: From Science to Policies
  • 1.4 The Way Ahead: Interdisciplinary Solutions to Biodiversity Healing
  • References
  • Chapter 2: The Hidden Biodiversity Data Retained in Pre-Linnaean Works: A Case Study with Two Important XVII Century Italian Entomologists
  • 2.1 Introduction
  • 2.2 Parasitoid and Predatory Wasps
  • 2.3 Diacinto Cestoni's Letter
  • 2.4 Gall Wasps and Other Gall Insects
  • 2.5 Discussion
  • References
  • Chapter 3: Marine Biodiversity Databanks
  • 3.1 Introduction
  • 3.2 What Does It Mean and What Does It Take to Know Biodiversity?
  • 3.2.1 Our Current Knowledge of Biodiversity and the Difficulties It Faces
  • 3.2.2 Improving Our Knowledge of Biodiversity via Cyber-Infrastructures
  • 3.2.2.1 A Brief History of Biodiversity Databanks
  • 3.2.2.2 Biodiversity Cyber-Infrastructures
  • 3.2.2.3 What Are Data in Biodiversity Databanks?
  • 3.3 Uses of Biodiversity Databanks
  • 3.3.1 What Do Scientists Do with the Data They Retrieve from Biodiversity Databanks?
  • 3.3.2 Databanks vs. Catalogs
  • 3.3.3 Databanks' Organization and the Dynamics of Biodiversity Knowledge
  • 3.4 On the Properties of Useful Biodiversity Databanks: Concluding Remarks
  • References
  • Chapter 4: Problems and Questions Posed by Cryptic Species. A Framework to Guide Future Studies
  • 4.1 Introduction
  • 4.2 Why It Is Important to Recognize Cryptic Species
  • 4.3 How to Detect and Classify Cryptic Species.
  • 4.3.1 Identification of Genetic Isolation and Biological Species
  • 4.3.2 Morphological Differentiation
  • 4.4 Identifying the Multiple Causes of Cryptic Species
  • 4.4.1 Taxonomic Process
  • 4.4.2 Other Causes Besides the Taxonomic Process
  • 4.4.2.1 Recent Divergence
  • 4.4.2.2 Deceleration in the Accumulation of Diagnostic Morphological Differences or in Morphological Divergence Relative to Genetic Divergence
  • 4.4.3 How to Determine If a Cause Is Likely to Explain a CGI Case
  • 4.5 Preliminary Results
  • 4.6 Concluding Remarks on the Use of Morphospecies for Biodiversity Assessment
  • References
  • Chapter 5: The Importance of Scaling in Biodiversity
  • 5.1 Introduction
  • 5.2 An Example from Fractals
  • 5.3 Scaling and the Species-Area Relationship
  • 5.4 Scaling and Species Abundance Distributions
  • 5.5 Final Remarks
  • References
  • Chapter 6: Measures of Biological Diversity: Overview and Unified Framework
  • 6.1 Richness
  • 6.2 Entropies and Diversity
  • 6.3 Effective Numbers
  • 6.4 Parametric Measures of Diversity
  • References
  • Chapter 7: Essential Biodiversity Change Indicators for Evaluating the Effects of Anthropocene in Ecosystems at a Global Scale
  • 7.1 Introduction
  • 7.1.1 The Need for Essential Biodiversity Variables
  • 7.1.2 The Challenges of Biodiversity Change Indicators
  • 7.1.3 The Need for Surrogates of Biodiversity Change
  • 7.1.4 The Importance of Drivers Limiting or Impacting Biodiversity Change
  • 7.1.5 The Nature and Intensity of the Drivers from the Past to the Future
  • 7.2 Objective and Rationale
  • 7.3 How to Choose Biodiversity Change Metrics in Relation to Driver's Intensity
  • 7.3.1 Low Intensity Drivers may Change Biodiversity Metrics from Genetic Composition to Species Populations
  • 7.3.2 Intermediate Intensity Drivers May Change Biodiversity Metrics from Species Traits to Community's Composition.
  • 7.3.2.1 Intraspecific Trait Variation
  • 7.3.2.2 Functional Trait Metrics
  • 7.3.2.3 Multi-trait Metrics
  • 7.3.2.4 Taxonomic Diversity Metrics
  • 7.3.3 Surrogates of Ecosystem Structure and Functioning Change from Remote Sensing
  • 7.4 Final Remarks
  • References
  • Part II: Characterizing Biodiversity: Beyond the Species Approach
  • Chapter 8: Are Species Good Units for Biodiversity Studies and Conservation Efforts?
  • 8.1 Introduction
  • 8.2 Species as the Units of Biodiversity and Conservation
  • 8.3 Why Species Are Not Good Units of Biodiversity and Conservation
  • 8.4 What to Do with the Species Concept?
  • 8.5 Concluding Remarks
  • References
  • Chapter 9: Why a Species-Based Approach to Biodiversity Is Not Enough. Lessons from Multispecies Biofilms
  • 9.1 Microbial Biodiversity and Bacterial Modes of Living
  • 9.2 How Multispecies Biofilms Increase Phenotypic and Genetic Diversity
  • 9.3 Multispecies Biofilms as Drivers of Evolution
  • 9.3.1 The Origin of Biodiversity
  • 9.3.2 Are MPB and BSCs Evolutionary Individuals?
  • 9.4 Conclusions
  • References
  • Chapter 10: Considering Intra-individual Genetic Heterogeneity to Understand Biodiversity
  • 10.1 Introduction to Intra-individual Genetic Heterogeneity
  • 10.2 Examples of IGH
  • 10.2.1 Mosaic Individuals
  • 10.2.2 Chimeric Individuals
  • 10.2.3 Mosaic vs. Chimeric Individuals
  • 10.3 The Importance of IGH in Ecology and Evolution
  • 10.3.1 The Metazoan Bias
  • 10.3.2 Biological Organization, Hierarchy and Relevance
  • 10.4 Conclusions
  • References
  • Chapter 11: Biodiversity, Disparity and Evolvability
  • 11.1 A Concern for Biodiversity: Evolution's Products at Risk
  • 11.1.1 Beyond Species Number
  • 11.1.2 Disparity vs. Diversity
  • 11.1.3 Functional Diversity
  • 11.1.4 Phylogeny vs. Function
  • 11.1.5 Antiquarian Sensibility
  • 11.2 Conserving Evolutionary Processes.
  • 11.3 Evo-Devo: Evolvability, Robustness, Plasticity
  • 11.4 A Lesson from Past Mass Extinctions?
  • References
  • Chapter 12: Probing the Process-Based Approach to Biodiversity: Can Plasticity Lead to the Emergence of Novel Units of Biodiversity?
  • 12.1 Entity-Based and Process-Based Approaches Are Complementary
  • 12.2 Entity-Based Approaches to Biodiversity Are Deficient
  • 12.2.1 The Limits of Conservation Fundamentalism
  • 12.2.2 Towards an Entity and Process-Based Approach to Conservation
  • 12.3 Does a Process-Based Approach to Biodiversity Make Sense?
  • 12.4 Can Phenotypic Plasticity Confer Evolutionary Potential?
  • 12.4.1 A Model of Plasticity
  • 12.5 Conclusion
  • References
  • Chapter 13: Between Explanans and Explanandum: Biodiversity and the Unity of Theoretical Ecology
  • 13.1 Introduction
  • 13.2 The Unity of Ecology
  • 13.3 The Explanatory Reversibility of Diversity
  • 13.4 Diversity as an Explanandum: Conceptual and Historical Aspects of the Ecological Coexistence Issue
  • 13.5 Diversity as an Explanans
  • 13.6 A "Conceptual Space" Approach to the Diversity Concept
  • 13.7 Conclusion
  • References
  • Chapter 14: Functional Biodiversity and the Concept of Ecological Function
  • 14.1 Introduction
  • 14.2 Ecological Functions and Levels of Selection
  • 14.3 Ecological Functions in Functional Ecology
  • 14.3.1 Ecological Context vs. Selective History
  • 14.3.2 The Explanatory Aim of Ecological Functions
  • 14.3.3 By-Products and the Notion of "Functioning as"
  • 14.4 What Is an Ecological Function, Then?
  • 14.5 Conclusion
  • References
  • Chapter 15: Integrating Ecology and Evolutionary Theory: A Game Changer for Biodiversity Conservation?
  • 15.1 Introduction
  • 15.2 On the Relationship Between Biodiversity and Ecosystem Services
  • 15.2.1 Ecosystem Services in Brief.
  • 15.2.2 Ecosystem Services and Biodiversity: Epistemological and Ethical Troubles
  • 15.2.3 Ecosystem Services and Biodiversity: An Ecologist's Perspective
  • 15.3 Eco-Evolutionary Feedback Theory
  • 15.3.1 EEFB and Contemporary Evolution: Three Empirical Cases
  • 15.3.1.1 Alewives and Zooplankton
  • 15.3.1.2 Trinidad Guppies and Nutrients Cycling
  • 15.3.1.3 Populus and Soil Nutrients Levels
  • 15.3.2 EEFB, Niche Construction, and Ecosystem Engineering
  • 15.3.3 EEFB and Environmentally-Mediated Gene-Associations
  • 15.4 Eco-Evolutionary Feedback Theory: Some Consequences for Biodiversity Conservation
  • 15.4.1 Ecosystem Engineers First?
  • 15.4.2 Genetic Diversity: Better Safe than Sorry
  • 15.4.3 EEFB Theory and Evolutionary-Enlightened Management
  • 15.5 Conclusions
  • References
  • Part III: Conserving Biodiversity: From Science to Policies
  • Chapter 16: On the Impossibility and Dispensability of Defining ''Biodiversity''
  • 16.1 The Integrative Power of 'Biodiversity'
  • 16.2 On Defining 'Biodiversity'
  • 16.3 Representing Biodiversity
  • 16.4 The Hybridization of Facts and Values in 'Biodiversity'
  • 16.5 Conclusion: Biodiversity as an Absolute Metaphor
  • References
  • Chapter 17: The Vagueness of "Biodiversity" and Its Implications in Conservation Practice
  • 17.1 Introduction
  • 17.2 The False Transparency of the Definition of Biodiversity
  • 17.2.1 Diverging Definitions of "Biodiversity" Coexist
  • 17.2.2 The Various Disciplinary Studies "of Biodiversity" Do Not Study the Same Things
  • 17.2.3 The Various Disciplinary Studies "of Biodiversity" Presuppose that they Study Various Aspects of a Common Entity
  • 17.2.4 Defining "Biodiversity" Thanks to the Notions of Diversity or Variety Is Insufficient to Identify such a Common Entity
  • 17.3 How False Transparency Creates Concrete Problems for Conservation Science and Action.
  • 17.3.1 The False Transparency of "Biodiversity" Can Impair the Coordination of Interacting Conservation Actions.