Factories of the Future : : The Italian Flagship Initiative.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2019.
©2019.
Year of Publication:2019
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (490 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Acknowledgements
  • Contents
  • Introduction
  • 1 The Italian Flagship Project: Factories of the Future
  • 1.1 The Importance of Manufacturing Industry
  • 1.2 Italian Manufacturing Industry
  • 1.3 International Research Initiatives on Manufacturing
  • 1.4 Italian Research Initiatives on Manufacturing
  • 1.4.1 Flagship Projects
  • 1.4.2 Technological Clusters
  • 1.4.3 National Plan Enterprise 4.0
  • 1.5 Flagship Project Factories of the Future
  • 1.5.1 Strategic Macro-objectives
  • 1.5.2 Enabling Technologies
  • 1.5.3 Calls for Proposals and Research Projects
  • 1.5.4 Results of the Flagship Project
  • References
  • Evolutionary and Reconfigurable Factory
  • 2 Model Predictive Control Tools for Evolutionary Plants
  • 2.1 Scientific and Industrial Motivations
  • 2.2 State of the Art
  • 2.3 Problem Statement and Proposed Approach
  • 2.4 MPC-Based Control Platform
  • 2.4.1 Main_program
  • 2.4.2 Task_Manager
  • 2.4.3 Line_Supervisor / Plant_j_Line_Supervisor
  • 2.4.4 Machine / Machine_j
  • 2.4.5 Controller / Controller_j
  • 2.4.6 Interface_vs_ext / Interface_vs_Txt_file/TCPIP
  • 2.5 Testing and Validation of Results
  • 2.5.1 Industrial Case
  • 2.5.2 De-manufacturing Pilot Plant Control Platform Implementation
  • 2.5.3 Experiments
  • 2.6 Conclusions and Future Research
  • References
  • 3 Exploiting Modular Pallet Flexibility for Product and Process Co-evolution Through Zero-Point Clamping Systems
  • 3.1 Scientific and Industrial Motivations
  • 3.2 State of the Art
  • 3.3 Problem Formalization
  • 3.4 Pallet Design and Management Approach
  • 3.4.1 Factory Data Model
  • 3.4.2 Pallet Configuration
  • 3.4.3 Design and Setup of the Pallet Scanner
  • 3.4.4 Loading and Optimization
  • 3.4.5 Pallet Inspection
  • 3.4.6 Machining Process Simulation
  • 3.5 Prototype and Testing
  • 3.5.1 Pro2ReFix Prototype
  • 3.5.2 Experiments.
  • 3.6 Conclusions and Future Research
  • References
  • 4 Knowledge Based Modules for Adaptive Distributed Control Systems
  • 4.1 Scientific and Industrial Motivations
  • 4.2 State of the Art
  • 4.3 Problem Statement
  • 4.4 Proposed Approach
  • 4.5 Developed Methodologies and Tools
  • 4.5.1 Communication Component
  • 4.5.2 Control Component
  • 4.5.3 Capability Assessment Component
  • 4.5.4 Context Recognition Component
  • 4.5.5 Optimization Component
  • 4.6 Testing and Validation of Results
  • 4.6.1 Industrial Case
  • 4.6.2 Experiments, Results and Analysis
  • 4.7 Conclusions and Future Research
  • References
  • 5 Highly Evolvable E-waste Recycling Technologies and Systems
  • 5.1 Scientific and Industrial Motivations
  • 5.2 State of the Art
  • 5.3 Problem Statement and Research Approach
  • 5.4 Hardware, Software, Business Models and Prototypes
  • 5.4.1 Hardware System
  • 5.4.2 Software System
  • 5.4.3 Business Model Validation
  • 5.4.4 Prototypes
  • 5.5 Industrial Testing and Results
  • 5.5.1 Industrial Case
  • 5.5.2 Vision System and Material Separation
  • 5.5.3 Business Sustainability
  • 5.6 Conclusions and Future Research
  • References
  • Sustainable Factory
  • 6 Innovative and Sustainable Production of Biopolymers
  • 6.1 Scientific and Industrial Motivations
  • 6.2 State of the Art
  • 6.3 Problem Statement and Proposed Approach
  • 6.4 Developed Technologies, Methodologies and Tools
  • 6.5 Experiments
  • 6.5.1 Optimization of PHA Production
  • 6.5.2 Optimization of PHA Extraction from MMC
  • 6.5.3 Design and Prepare TiO2 and Ag0 Based Nanostructured Materials
  • 6.5.4 Antibacterial Tests
  • 6.5.5 Pre- and Post-treatments with TiO2 Textiles
  • 6.5.6 Purification of Wastewater
  • 6.5.7 Automation Tools for Process Energy and Efficiency Management
  • 6.5.8 Scale-up of Photocatalytic Advanced Oxidation Process
  • 6.6 Conclusions and Future Research.
  • References
  • 7 Integrated Technological Solutions for Zero Waste Recycling of Printed Circuit Boards (PCBs)
  • 7.1 Scientific and Industrial Motivations
  • 7.2 State of the Art
  • 7.3 Problem Statement and Research Approach
  • 7.4 New Solutions for PCBs Recycling
  • 7.4.1 Shredding Process Modelling and Optimisation
  • 7.4.2 New Technologies to Recycle PCBs Materials
  • 7.4.3 New Business Models for PCBs Recycling
  • 7.4.4 Prototypes
  • 7.5 Industrial Testing and Results
  • 7.5.1 Shredding Model Validation and Parameters Optimisation
  • 7.5.2 Validation of HF-Free Process for MF Assessment
  • 7.6 Conclusions and Future Research
  • References
  • Factory for the People
  • 8 Systemic Approach for the Definition of a Safer Human-Robot Interaction
  • 8.1 Scientific and Industrial Motivations
  • 8.2 State of the Art
  • 8.3 Problem Statement and Proposed Approach
  • 8.4 The Experimental Solution
  • 8.4.1 Architecture for Safe Distributed Robotic Systems
  • 8.4.2 Software Stack for Real-Time Wireless Sensor Network in the NCS
  • 8.4.3 Sensing System
  • 8.4.4 Contact-Less Modes for Safe Workspace Sharing
  • 8.5 Conclusions and Future Research
  • References
  • 9 Haptic Teleoperation of UAV Equipped with Gamma-Ray Spectrometer for Detection and Identification of Radio-Active Materials in Industrial Plants
  • 9.1 Scientific and Industrial Motivations, Goals and Objectives
  • 9.2 State of the Art
  • 9.3 Problem Statement and Proposed Approach
  • 9.4 Developed Technologies, Methodologies and Tools
  • 9.5 Testing and Validation of Results
  • 9.5.1 Laboratory Test
  • 9.5.2 Test of the Prototype in a Relevant Environment
  • 9.5.3 Test of the Prototype in Operational Environment
  • 9.6 Conclusions and Future Research
  • References
  • Factory for Customised and Personalised Products.
  • 10 Proposing a Tool for Supply Chain Configuration: An Application to Customised Production
  • 10.1 Scientific and Industrial Motivations, Goals and Objectives
  • 10.2 State of the Art
  • 10.3 Modelling a Supply Network for Customized Production
  • 10.4 Outcomes
  • 10.4.1 Simulation Model
  • 10.4.2 Software Architecture
  • 10.4.3 Experiments
  • 10.5 Conclusions and Future Research
  • References
  • 11 Hospital Factory for Manufacturing Customised, Patient-Specific 3D Anatomo-Functional Models and Prostheses
  • 11.1 Scientific and Industrial Motivations, Goals and Objectives
  • 11.2 State of the Art
  • 11.3 Problem Statement and Proposed Approach
  • 11.3.1 Additive Manufacturing for Cardiovascular Models
  • 11.3.2 Micro-EDM and Additive Manufacturing for Fixation Plates
  • 11.3.3 Prediction Models for Patient-Specific Functional Properties
  • 11.3.4 Business Models
  • 11.4 Developed Technologies, Methodologies and Tools
  • 11.4.1 Additive Manufacturing for Cardiovascular Models
  • 11.4.2 Micro-EDM and Additive Manufacturing for Fixation Plates
  • 11.4.3 Prediction Models to Identify Patient-Specific Functional Properties
  • 11.4.4 Business Models
  • 11.5 Outcomes
  • 11.5.1 Aorta Silicone Model
  • 11.5.2 Fixation Plates
  • 11.5.3 Prediction Models
  • 11.5.4 Business Models
  • 11.6 Conclusions and Future Research
  • References
  • 12 Polymer Nanostructuring by Two-Photon Absorption
  • 12.1 Scientific and Industrial Motivations
  • 12.2 State of the Art
  • 12.3 Problem Statement and Proposed Approach
  • 12.4 Developed Technologies, Methodologies and Tools
  • 12.4.1 Realization of AFM Tips
  • 12.4.2 Realization of Nanoporous Membranes
  • 12.4.3 Developed Prototypes
  • 12.5 Testing and Validation of Results
  • 12.5.1 Validation of Chosen Photoresist
  • 12.5.2 Validation of Tailored Atomic Force Microscopy (AFM) Tips
  • 12.6 Conclusions and Future Research.
  • References
  • 13 Use of Nanostructured Coating to Improve Heat Exchanger Efficiency
  • 13.1 Scientific and Industrial Motivations
  • 13.2 State of the Art
  • 13.3 Problem Statement and Proposed Approach
  • 13.4 Developed Technologies, Methodologies and Tools
  • 13.4.1 Development of Functional Layer
  • 13.4.2 Deposition Techniques
  • 13.4.3 Simulation of Heat Exchanger Performance
  • 13.4.4 Test Rig and Prototypes
  • 13.5 Testing and Validation of Results
  • 13.5.1 Type A Heat Exchanger
  • 13.5.2 Type B, Type C and Bonded Heat Exchangers
  • 13.5.3 Test on Channel
  • 13.5.4 Customized Software to Design Tailored Heat Exchanger
  • 13.6 Conclusions and Future Research
  • References
  • Advanced-Performance Factory
  • 14 Surface Nano-structured Coating for Improved Performance of Axial Piston Pumps
  • 14.1 Scientific and Industrial Motivations
  • 14.2 State of the Art
  • 14.3 Problem Statement and Proposed Approach
  • 14.4 Developed Technologies, Methodologies and Tools
  • 14.4.1 Design and Synthesis of Functional Layer
  • 14.4.2 Slippers Coating
  • 14.4.3 Slipper Test Bench
  • 14.4.4 MD Simulation
  • 14.5 Experiments
  • 14.5.1 Fluid Surface Interaction
  • 14.5.2 Tribological Performance
  • 14.5.3 Testing the Computational Model
  • 14.5.4 Testing the Hydraulic Pump
  • 14.6 Conclusions and Future Research
  • References
  • 15 Monitoring Systems of an Electrospinning Plant for the Production of Composite Nanofibers
  • 15.1 Scientific and Industrial Motivations
  • 15.2 State of the Art
  • 15.3 Problem Statement and Proposed Approach
  • 15.4 Developed Technologies, Methodologies and Tools
  • 15.4.1 Preparation of Electrospinnable Solutions
  • 15.4.2 Monitoring and Control Hardware for Electrospinning
  • 15.4.3 Software Tool for Monitoring and Control
  • 15.4.4 Image Analysis Tool for Quality Control of the Electrospun Products.
  • 15.5 Testing and Validation of Results.