Rangeland Systems : : Processes, Management and Challenges.

Saved in:
Bibliographic Details
Superior document:Springer Series on Environmental Management Series
:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2017.
©2017.
Year of Publication:2017
Edition:1st ed.
Language:English
Series:Springer Series on Environmental Management Series
Online Access:
Physical Description:1 online resource (664 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Contributors
  • Chapter 1: Rangeland Systems: Foundation for a Conceptual Framework
  • 1.1 Introduction
  • 1.2 Extent, Distribution, and Societal Value
  • 1.3 Events Contributing to Rapid Conceptual Advancement
  • 1.3.1 Internal to the Profession
  • 1.3.2 External to Profession
  • 1.4 Section Perspectives
  • 1.4.1 Processes Section
  • 1.4.2 Management Section
  • 1.4.3 Challenges Section
  • 1.5 Foundation for a Rangeland Systems Framework
  • 1.6 Summary
  • References
  • Section I: Processes
  • Chapter 2: Woody Plant Encroachment: Causes and Consequences
  • 2.1 Introduction
  • 2.2 Rates of Change
  • 2.3 Factors Influencing Abundance of Woody Plants
  • 2.3.1 Herbivory: Grazers and Browsers
  • 2.3.2 Climate
  • 2.3.3 Topography and Soils
  • 2.3.4 Increased Atmospheric CO2
  • 2.4 Population Interactions Between Grasses and Woody Plants
  • 2.4.1 Establishment of Woody Plant Seedlings
  • 2.4.2 Transitioning from Saplings to Adults
  • 2.4.3 Woody Plant Carrying Capacity
  • 2.4.4 Why Do So Few Woody Species Proliferate in Grasslands?
  • 2.5 Ecosystem Services
  • 2.5.1 Carbon Sequestration: Plant and Soil Pools
  • 2.5.2 Hydrology
  • 2.5.3 Biodiversity
  • 2.5.3.1 Herbaceous Vegetation
  • 2.5.3.2 Animals
  • 2.6 Management Perspectives
  • 2.7 Future Perspectives
  • 2.8 Summary
  • 2.8.1 Causes
  • 2.8.2 Consequences for Ecosystem Services
  • 2.8.3 Management
  • References
  • Chapter 3: Ecohydrology: Processes and Implications for Rangelands
  • 3.1 Introduction
  • 3.2 Ecosystem Services
  • 3.2.1 Regulating Services: Water Distribution and Purification
  • 3.2.1.1 Infiltration: Water Regulation at the Soil Surface
  • 3.2.2 Overland Flow: Regulation at the Hillslope Scale
  • 3.2.3 Drainage: Water Regulation Within the Soil
  • 3.2.4 Riparian Systems: Regulation at the Watershed Scale.
  • 3.2.5 Regulation in Groundwater-Coupled Rangelands
  • 3.2.5.1 Vegetation Dynamics Affect Groundwater Consumption
  • 3.2.5.2 Land Use/Management Affects Groundwater Consumption
  • 3.3 Regulating Services: Climate Regulation
  • 3.4 Supporting Services: Water Cycling and Protection Against Erosion
  • 3.4.1 Water Cycling: With a Focus on E vs. T
  • 3.4.2 Protection of Soils Against Erosion and Degradation
  • 3.4.2.1 Understanding the Importance of Vegetation Patch Structure
  • 3.4.2.2 Wind and Water Erosion
  • 3.5 Provisioning Services: Water Supply
  • 3.6 Observational and Conceptual Advances
  • 3.6.1 Observational Advances
  • 3.6.1.1 Remote Sensing for Investigating Components of the Water Budget
  • 3.6.1.2 In Situ Methods for Measuring Components of the Water Budget
  • Partitioning of Evapotranspiration
  • Monitoring of Soil Moisture
  • 3.7 Conceptual Advances
  • 3.7.1 Spatial Variability and Scale
  • 3.7.2 Ecological Threshold and Feedback Mechanisms
  • 3.7.3 Hydrological Connectivity
  • 3.8 Future Perspectives
  • 3.9 Summary
  • References
  • Chapter 4: Soil and Belowground Processes
  • 4.1 Introduction
  • 4.2 Major Conceptual Advances
  • 4.2.1 Community Composition and Function
  • 4.2.1.1 Soil-Plant Interactions
  • 4.2.1.2 Biological Soil Crusts
  • 4.2.1.3 Soil Microbial Diversity and Function
  • 4.2.2 Ecosystem Processes
  • 4.2.2.1 Water
  • 4.2.2.2 Decomposition
  • 4.2.2.3 Rhizosphere Dynamics
  • 4.2.2.4 Carbon Dynamics
  • 4.2.2.5 Nitrogen Dynamics
  • 4.3 Anthropogenic Impacts and Societal Implications
  • 4.3.1 Responses to Land-Use Change
  • 4.3.2 Responses to Invasive Species
  • 4.3.3 Responses to Global Climate Change
  • 4.3.3.1 Precipitation Change
  • 4.3.3.2 Elevated CO2
  • 4.3.3.3 Atmospheric Deposition
  • 4.3.4 Restoration
  • 4.4 Future Perspectives
  • 4.5 Summary
  • References.
  • Chapter 5: Heterogeneity as the Basis for Rangeland Management
  • 5.1 Introduction
  • 5.2 Heterogeneity and Scale: Concepts Linking Pattern and Process
  • 5.2.1 Types of Heterogeneity
  • 5.2.1.1 Measured vs. Functional
  • 5.2.1.2 Spatial vs. Temporal
  • 5.2.2 Sources of Heterogeneity
  • 5.2.2.1 Inherent Heterogeneity
  • 5.2.2.2 Disturbance-Driven Heterogeneity
  • 5.3 Heterogeneity and Rangeland Function: Three Major Cases
  • 5.3.1 Heterogeneity and Herbivore Populations
  • 5.3.2 Fire and Rangeland Ecosystems
  • 5.3.2.1 Heterogeneity and the Shifting Mosaic
  • 5.3.3 Heterogeneity of Fuel and Fire Effects
  • 5.3.4 Biodiversity and Ecosystem Function
  • 5.4 Future Perspectives
  • 5.5 Summary
  • References
  • Chapter 6: Nonequilibrium Ecology and Resilience Theory
  • 6.1 Introduction
  • 6.2 Conceptual Advances
  • 6.2.1 Equilibrium and Nonequilibrium Ecology
  • 6.2.2 Engineering Versus Ecological Resilience
  • 6.2.3 Drivers, Controlling Variables, and Feedback Mechanisms
  • 6.2.4 Threshold Indicators
  • 6.2.5 Rethinking Rangeland Ecology
  • 6.2.5.1 Range Model
  • 6.2.5.2 Nonequilibrium Persistent Model
  • 6.2.5.3 The State-and-Transition Model
  • 6.2.6 What Has Been Learned?
  • 6.3 Resilience of Social-Ecological Systems
  • 6.3.1 Resilience Thinking
  • 6.3.1.1 Social Resilience
  • 6.3.1.2 Adaptive Capacity and Social Learning
  • 6.3.1.3 Anticipating System Transformation
  • 6.3.2 Resilience-Based Governance and Policy
  • 6.3.3 Resilience Analysis and Management
  • 6.3.4 What Has Been Learned?
  • 6.4 Future Perspectives
  • 6.4.1 Heterogeneity and Livestock-Vegetation Dynamics
  • 6.4.2 Procedures to Implement Resilience-Based Management
  • 6.4.3 Recognizing and Guiding Transformation
  • 6.4.4 Institutional Reorganization to Promote Resilience
  • 6.5 Summary
  • References
  • Chapter 7: Ecological Consequences of Climate Change on Rangelands.
  • 7.1 Introduction
  • 7.2 Recent Climatic Trends: A Climate Change Signature
  • 7.3 Climate Change Projections
  • 7.4 Key Scientific Principles for Projecting Climate Change Impacts
  • 7.4.1 Magnified Greenhouse Effects Are Irreversible
  • 7.4.2 Ecological Consequences of Climate Change Will Vary Regionally
  • 7.4.3 Climate Drivers Have Unique but Potentially Interactive Effects on Plants and Ecosystem Processes
  • 7.4.4 Rangelands Will Respond Strongly to Driver Effects on Soil Water Availability
  • 7.4.5 Soil Nitrogen (N) Availability both Regulates the Response of Plant Productivity (NPP) to Climate Change Drivers and Is Affected by Drivers
  • 7.4.6 Ecosystem Responses to Climate Change Drivers Vary Because of Differences in Management Practices and Historical Land-Use Patterns
  • 7.4.7 Climate Change Drivers Affect Livestock Production both Directly and Indirectly
  • 7.4.8 Climate Change Indirectly Affects Vegetation Composition and Structure by Influencing Fire Regimes
  • 7.4.9 Climate Change May Lead to Communities That Are Unlike any Found Today, with Important Consequences for Ecosystem Function and Management
  • 7.4.10 Increased Climatic Variability Increases Fluctuations in Ecological Systems, Rendering Sustainable Management More Difficult
  • 7.5 An Assessment of Climate Change Scenarios
  • 7.5.1 Warmer, Drier Climate Scenario
  • 7.5.2 Warmer, Wetter Winters Scenario
  • 7.5.3 Warmer, Wetter Growing Season Scenario
  • 7.6 Knowledge Gaps
  • 7.7 Summary
  • References
  • Section II: Management
  • Chapter 8: Rangelands as Social-Ecological Systems
  • 8.1 Introduction: What Is a Social-Ecological System?
  • 8.1.1 Conceptualizing SESs
  • 8.1.2 Scale
  • 8.1.3 Feedbacks
  • 8.1.4 Resilience and Adaptability
  • 8.2 Environmental Governance
  • 8.3 Case Studies
  • 8.3.1 Adaptation to Climate Change by Australian Livestock Managers.
  • 8.3.2 Climate Change and Forb Restoration in the Great Basin, USA
  • 8.3.3 California Black Rail Habitat in the Sierra Nevada Foothills
  • 8.3.4 Nomad Sedentarization Project in Xinjiang, China
  • 8.3.5 Environmental Accounting for Spanish Private Dehesa Properties
  • 8.4 What Can Be Learned from These Case Studies?
  • 8.5 Future Perspectives
  • 8.6 Summary
  • References
  • Chapter 9: State and Transition Models: Theory, Applications, and Challenges
  • 9.1 Introduction
  • 9.2 Conceptual Advances in the Ecology of State Transitions
  • 9.2.1 Transient Dynamics
  • 9.2.2 State Transitions
  • 9.2.3 Distinguishing Transient Dynamics from State Transitions
  • 9.3 Development of State and Transition Models
  • 9.3.1 Define the "Site"
  • 9.3.2 Define the Alternative States
  • 9.3.3 Describe Transitions
  • 9.4 Development and Applications of STMs in Rangeland Management
  • 9.4.1 Australia
  • 9.4.1.1 History
  • 9.4.1.2 Current Applications
  • 9.4.2 Argentina
  • 9.4.2.1 History
  • 9.4.2.2 Current Applications
  • 9.4.3 United States
  • 9.4.3.1 History
  • 9.4.3.2 Current Applications
  • 9.4.4 Mongolia
  • 9.4.4.1 History
  • 9.4.4.2 Current Applications
  • 9.4.5 Summary of STM Applications
  • 9.5 Knowledge Gaps
  • 9.5.1 Reference States, History, and Novel Ecosystems
  • 9.5.2 Broader Representation of Ecosystem Services
  • 9.5.3 Climate Change
  • 9.5.4 Testable Mechanisms
  • 9.5.5 Information Delivery and Use
  • 9.6 Future Perspectives
  • 9.6.1 Participatory Approaches to Model Development
  • 9.6.2 Structured Decision-Making via State and Transition Models
  • 9.6.3 Mapping State-and-Transition Model Information
  • 9.7 Summary
  • References
  • Chapter 10: Livestock Production Systems
  • 10.1 Introduction
  • 10.1.1 Goals and Objectives
  • 10.1.2 Global Significance of Ruminant Livestock
  • 10.1.3 Global Livestock Production.
  • 10.1.4 Economics of Livestock Production: The US Cattle Example.