Handbook of Mathematical Geosciences : : Fifty Years of IAMG.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2018.
Ã2018.
Year of Publication:2018
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (911 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5005437360
ctrlnum (MiAaPQ)5005437360
(Au-PeEL)EBL5437360
(OCoLC)1043913114
collection bib_alma
record_format marc
spelling Daya Sagar, B. S.
Handbook of Mathematical Geosciences : Fifty Years of IAMG.
1st ed.
Cham : Springer International Publishing AG, 2018.
Ã2018.
1 online resource (911 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Foreword -- Preface -- Contents -- Editors and Contributors -- Theory -- 1 Kriging, Splines, Conditional Simulation, Bayesian Inversion and Ensemble Kalman Filtering -- Abstract -- 1.1 Introduction -- 1.2 Deterministic Aspects of Geostatistics -- 1.2.1 Simple Stationary Kriging -- 1.2.2 Kriging with Intrinsic Random Functions of Order k -- 1.2.3 Kriging Extensions -- 1.2.3.1 Generalization of Kriging to the Interpolation of Average Values -- 1.2.3.2 Error CoKriging -- 1.2.3.3 Dual Kriging -- 1.2.4 Kriging and Splines -- 1.2.4.1 Interpolating Splines -- 1.2.4.2 Smoothing Splines -- 1.2.4.3 Kriging and Regularization-The Discrete Case -- 1.2.5 Kriging and Bayesian Inversion -- 1.2.5.1 Bayesian Linear Inversion -- 1.2.5.2 Kriging and Bayesian Inversion -- 1.2.6 Energy-Based Versus Probabilistic Estimates -- 1.2.7 Conclusion on Kriging -- 1.3 Stochastic Aspects of Geostatistics: Conditional Simulation -- 1.3.1 Method 1: "Smooth Plus Rough" or "Rough Plus Smooth" Algorithm -- 1.3.2 Method 2: Sequential Gaussian Simulation (SGS) -- 1.3.3 Spectrum and Conditional Simulation -- 1.4 Geostatistical Inversion of Seismic Data -- 1.4.1 Deterministic Seismic Inversion -- 1.4.2 Geostatistical Inversion (GI) -- 1.5 Kalman Filtering and Ensemble Kalman Filtering -- 1.5.1 Kalman Filtering (KF) -- 1.5.2 Constraining Reservoir Models by Production Data -- 1.5.3 Ensemble Kalman Filtering (EnKF) Versus Conditional Simulation -- 1.5.4 Ensemble Kalman Filtering and Its Relationship with CoKriging -- 1.6 Beyond the Formal Relationship Between Geostatistics and Bayes -- 1.6.1 Two Identical Formalisms but Different Assumptions -- 1.6.2 Model Falsifiability -- 1.6.3 Looking Ahead: Machine Learning and Falsifiability -- 1.7 Conclusion -- Acknowledgements -- References -- 2 A Statistical Commentary on Mineral Prospectivity Analysis -- 2.1 Introduction.
2.2 Example Data -- 2.3 Logistic Regression -- 2.3.1 Basics of Logistic Regression -- 2.3.2 Flexibility and Validity -- 2.3.3 Fitting Procedure and Implicit Assumptions -- 2.3.4 Pixel Size and Model Consistency -- 2.4 Poisson Point Process Models -- 2.4.1 Logistic Regression with Infinitesimal Pixels -- 2.4.2 Poisson Point Process -- 2.4.3 Fitting a Poisson Point Process Model -- 2.4.4 Murchison Example -- 2.4.5 Statistical Inference -- 2.4.6 Diagnostics -- 2.4.7 Rationale for Prediction -- 2.5 Monotone Regression -- 2.6 Nonparametric Curve Estimation -- 2.7 ROC Curves -- 2.8 Recursive Partitioning -- References -- 3 Testing Joint Conditional Independence of Categorical Random Variables with a Standard Log-Likelihood Ratio Test -- 3.1 Introduction -- 3.2 From Contingency Tables to Log-Linear Models -- 3.3 Independence, Conditional Independence of Random Variables -- 3.4 Logistic Regression, and Its Special Case of Weights-of-Evidence -- 3.5 Hammersley-Clifford Theorem -- 3.6 Testing Joint Conditional Independence of Categorical Random Variables -- 3.7 Conditional Distribution, Logistic Regression -- 3.8 Practical Applications -- 3.8.1 Practical Application with Fabricated Indicator Data -- 3.9 Discussion and Conclusions -- References -- 4 Modelling Compositional Data. The Sample Space Approach -- 4.1 Introduction -- 4.2 Scale Invariance, Key Principle of Compositions -- 4.3 The Simplex as Sample Space of Compositions -- 4.4 Perturbation, a Natural Shift Operation on Compositions -- 4.5 Conditions on Metrics for Compositions -- 4.6 Consequences of the Aitchison Geometry in the Sample Space of Compositional Data -- 4.7 Conclusions -- References -- 5 Properties of Sums of Geological Random Variables -- Abstract -- 5.1 Introduction -- 5.2 Preliminaries -- 5.2.1 Bounds -- 5.3 Thumbnail Case Studies -- 5.3.1 USGS Oil and Gas Resource Projections.
5.3.2 USGS Probabilistic Assessment of CO2 Storage Capacity -- 5.3.3 Cupolas and Oil and Gas Resource Assessment -- 5.4 Concluding Remarks -- References -- 6 A Statistical Analysis of the Jacobian in Retrievals of Satellite Data -- 6.1 Introduction -- 6.2 A Statistical Framework for Satellite Retrievals -- 6.3 The Jacobian Matrix and its Unit-Free Version -- 6.4 Statistical Significance Filter -- 6.4.1 Hypothesis Tests -- 6.4.2 Distribution Theory for the Robust Test Statistic -- 6.4.3 Multiple Hypothesis Tests Define the Statistical Significance Filter -- 6.5 ACOS Retrievals of the Atmospheric State from Japan's GOSAT Satellite -- 6.6 Discussion -- References -- 7 All Realizations All the Time -- Abstract -- 7.1 Introduction -- 7.2 Simulation -- 7.3 Decision Making -- 7.4 Geostatistical Simulation -- 7.5 Resource Decision Making -- 7.6 Alternatives to All Realizations -- 7.7 Concluding Remarks -- Acknowledgements -- References -- 8 Binary Coefficients Redux -- Abstract -- 8.1 Introduction -- 8.2 Empirical Comparisons and a Taxonomy -- 8.3 Effects of Rare and Endemic Taxa -- 8.4 Adjusting for Poor Sampling -- 8.5 Metric? Euclidean? -- 8.6 From Expected Values to Null Association -- 8.7 Illustrative Example -- 8.8 Discussion and Conclusions -- 8.9 Summary -- Acknowledgements -- References -- 9 Tracking Plurigaussian Simulations -- Abstract -- 9.1 Introduction -- 9.2 Review of Complex Networks -- 9.3 Network Analysis of Google Citations of Plurigaussian Simulations -- 9.3.1 Building a Citation Network -- 9.4 Diffusion of the New Method into Industry -- 9.4.1 Co-authors and Repeat Co-authors from Industry -- 9.4.2 Surveys of Academics and Consultants -- 9.5 Conclusions and Perspectives for Future Work -- 9.5.1 What Lessons Can Be Learned from the Study for Policy-Makers -- Acknowledgements -- Appendix 9.1 -- References.
10 Mathematical Geosciences: Local Singularity Analysis of Nonlinear Earth Processes and Extreme Geo-Events -- Abstract -- 10.1 Introduction -- 10.2 What Is Mathematical Geosciences or Geomathematics? -- 10.3 What Contributions Has MG Made to the Geosciences? -- 10.4 Frontiers of Earth Science and Opportunities of MG -- 10.5 Fractal Density and Singularity Analysis of Nonlinear Geo-Processes and Extreme Geo-Events -- 10.5.1 Fractal Density -- 10.5.2 Density-Scale Power-Law Model and Singularity -- 10.5.3 Multifractal Density -- 10.5.4 Fractal Density Structure and Clustering Distribution -- 10.6 Fractal Integral and Fractal Differential Operations of Nonlinear Functions -- 10.7 Earth Dynamic Processes and Extreme Events -- 10.7.1 Phase Transition -- 10.7.2 Self-organized Criticality -- 10.7.3 Multiplicative Cascade Processes -- 10.8 Fractal Density of Lithosphere Rheology in Phase Transition Zones and Association with Earthquakes -- 10.8.1 Rheology Constitutive Equation -- 10.8.2 Rheology and Phase Transition -- 10.8.3 Frequency-Depth Fractal Density Distribution and Singularity Analysis of Earthquakes -- 10.9 Discussion and Conclusions -- Acknowledgements -- References -- General Applications -- 11 Electrofacies in Reservoir Characterization -- Abstract -- 11.1 Introduction -- 11.2 The Amal Field of Libya -- 11.3 Electrofacies Analysis -- 11.3.1 Choice of Log Traces for Electrofacies Calculation -- 11.3.2 Standardization of Log Traces -- 11.3.3 Estimating the Number of Distinct Electrofacies -- 11.3.4 Assigning Well Log Intervals to Electrofacies -- 11.3.5 Converting the Electrofacies Classification into a Prediction Function -- 11.4 What Do Amal Electrofacies Mean? -- 11.4.1 Lithologic Description of Amal Electrofacies -- 11.5 Conclusions -- Acknowledgements -- References -- 12 Shoreline Extrapolations -- 12.1 Three Problems, One Theoretical Tool.
12.2 Median Set -- 12.3 Median and Average for Non Ordered Sets -- 12.4 Extrapolations via the Quench Function -- 12.5 Accretion and Homotopy -- 12.6 Conclusion -- References -- 13 An Introduction to the Spatio-Temporal Analysis of Satellite Remote Sensing Data for Geostatisticians -- 13.1 Introduction -- 13.2 Satellite Images -- 13.2.1 Access and Analysis of Satellite Images with R -- 13.3 Derived Variables from Remote Sensing Data -- 13.4 Pre-processing -- 13.5 Spatial Interpolation -- 13.6 Spatio-Temporal Interpolation -- 13.6.1 Geostatistical R Packages -- 13.7 Conclusions -- References -- 14 Flint Drinking Water Crisis: A First Attempt to Model Geostatistically the Space-Time Distribution of Water Lead Levels -- Abstract -- 14.1 Introduction -- 14.2 Materials and Methods -- 14.2.1 Datasets -- 14.2.2 Space-Time Kriging and Covariance Models -- 14.2.3 Accounting for Secondary Information -- 14.2.4 Cross-Validation -- 14.3 Results and Discussion -- 14.3.1 Spatial Distribution -- 14.3.2 Temporal Trend Modeling -- 14.3.3 Variography -- 14.3.4 Cross-Validation Analysis -- 14.4 Conclusions -- Acknowledgements -- References -- 15 Statistical Parametric Mapping for Geoscience Applications -- Abstract -- 15.1 Introduction -- 15.2 Anomaly Detection with Statistical Parametric Mapping -- 15.2.1 MultiGaussian Fields -- 15.2.2 Calculating the SPM -- 15.2.2.1 Conditional Differences -- 15.2.2.2 Isolated Regions of Activation -- 15.2.3 Localized Anomaly Detection -- 15.3 Example Problems -- 15.3.1 Anomaly Detection in Images -- 15.3.2 Ground Water Pumping -- 15.3.2.1 Problem Setup -- 15.3.2.2 Results -- 15.4 Summary -- Appendix: Conditional Differences -- References -- 16 Water Chemistry: Are New Challenges Possible from CoDA (Compositional Data Analysis) Point of View? -- Abstract -- 16.1 Water Chemistry Data as Compositional Data.
16.2 Isometric-Log Ratio Transformation: Is This the Key to Decipher the Dynamics of Geochemical Systems?.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Cheng, Qiuming.
Agterberg, Frits.
Print version: Daya Sagar, B. S. Handbook of Mathematical Geosciences Cham : Springer International Publishing AG,c2018 9783319789989
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5437360 Click to View
language English
format eBook
author Daya Sagar, B. S.
spellingShingle Daya Sagar, B. S.
Handbook of Mathematical Geosciences : Fifty Years of IAMG.
Intro -- Foreword -- Preface -- Contents -- Editors and Contributors -- Theory -- 1 Kriging, Splines, Conditional Simulation, Bayesian Inversion and Ensemble Kalman Filtering -- Abstract -- 1.1 Introduction -- 1.2 Deterministic Aspects of Geostatistics -- 1.2.1 Simple Stationary Kriging -- 1.2.2 Kriging with Intrinsic Random Functions of Order k -- 1.2.3 Kriging Extensions -- 1.2.3.1 Generalization of Kriging to the Interpolation of Average Values -- 1.2.3.2 Error CoKriging -- 1.2.3.3 Dual Kriging -- 1.2.4 Kriging and Splines -- 1.2.4.1 Interpolating Splines -- 1.2.4.2 Smoothing Splines -- 1.2.4.3 Kriging and Regularization-The Discrete Case -- 1.2.5 Kriging and Bayesian Inversion -- 1.2.5.1 Bayesian Linear Inversion -- 1.2.5.2 Kriging and Bayesian Inversion -- 1.2.6 Energy-Based Versus Probabilistic Estimates -- 1.2.7 Conclusion on Kriging -- 1.3 Stochastic Aspects of Geostatistics: Conditional Simulation -- 1.3.1 Method 1: "Smooth Plus Rough" or "Rough Plus Smooth" Algorithm -- 1.3.2 Method 2: Sequential Gaussian Simulation (SGS) -- 1.3.3 Spectrum and Conditional Simulation -- 1.4 Geostatistical Inversion of Seismic Data -- 1.4.1 Deterministic Seismic Inversion -- 1.4.2 Geostatistical Inversion (GI) -- 1.5 Kalman Filtering and Ensemble Kalman Filtering -- 1.5.1 Kalman Filtering (KF) -- 1.5.2 Constraining Reservoir Models by Production Data -- 1.5.3 Ensemble Kalman Filtering (EnKF) Versus Conditional Simulation -- 1.5.4 Ensemble Kalman Filtering and Its Relationship with CoKriging -- 1.6 Beyond the Formal Relationship Between Geostatistics and Bayes -- 1.6.1 Two Identical Formalisms but Different Assumptions -- 1.6.2 Model Falsifiability -- 1.6.3 Looking Ahead: Machine Learning and Falsifiability -- 1.7 Conclusion -- Acknowledgements -- References -- 2 A Statistical Commentary on Mineral Prospectivity Analysis -- 2.1 Introduction.
2.2 Example Data -- 2.3 Logistic Regression -- 2.3.1 Basics of Logistic Regression -- 2.3.2 Flexibility and Validity -- 2.3.3 Fitting Procedure and Implicit Assumptions -- 2.3.4 Pixel Size and Model Consistency -- 2.4 Poisson Point Process Models -- 2.4.1 Logistic Regression with Infinitesimal Pixels -- 2.4.2 Poisson Point Process -- 2.4.3 Fitting a Poisson Point Process Model -- 2.4.4 Murchison Example -- 2.4.5 Statistical Inference -- 2.4.6 Diagnostics -- 2.4.7 Rationale for Prediction -- 2.5 Monotone Regression -- 2.6 Nonparametric Curve Estimation -- 2.7 ROC Curves -- 2.8 Recursive Partitioning -- References -- 3 Testing Joint Conditional Independence of Categorical Random Variables with a Standard Log-Likelihood Ratio Test -- 3.1 Introduction -- 3.2 From Contingency Tables to Log-Linear Models -- 3.3 Independence, Conditional Independence of Random Variables -- 3.4 Logistic Regression, and Its Special Case of Weights-of-Evidence -- 3.5 Hammersley-Clifford Theorem -- 3.6 Testing Joint Conditional Independence of Categorical Random Variables -- 3.7 Conditional Distribution, Logistic Regression -- 3.8 Practical Applications -- 3.8.1 Practical Application with Fabricated Indicator Data -- 3.9 Discussion and Conclusions -- References -- 4 Modelling Compositional Data. The Sample Space Approach -- 4.1 Introduction -- 4.2 Scale Invariance, Key Principle of Compositions -- 4.3 The Simplex as Sample Space of Compositions -- 4.4 Perturbation, a Natural Shift Operation on Compositions -- 4.5 Conditions on Metrics for Compositions -- 4.6 Consequences of the Aitchison Geometry in the Sample Space of Compositional Data -- 4.7 Conclusions -- References -- 5 Properties of Sums of Geological Random Variables -- Abstract -- 5.1 Introduction -- 5.2 Preliminaries -- 5.2.1 Bounds -- 5.3 Thumbnail Case Studies -- 5.3.1 USGS Oil and Gas Resource Projections.
5.3.2 USGS Probabilistic Assessment of CO2 Storage Capacity -- 5.3.3 Cupolas and Oil and Gas Resource Assessment -- 5.4 Concluding Remarks -- References -- 6 A Statistical Analysis of the Jacobian in Retrievals of Satellite Data -- 6.1 Introduction -- 6.2 A Statistical Framework for Satellite Retrievals -- 6.3 The Jacobian Matrix and its Unit-Free Version -- 6.4 Statistical Significance Filter -- 6.4.1 Hypothesis Tests -- 6.4.2 Distribution Theory for the Robust Test Statistic -- 6.4.3 Multiple Hypothesis Tests Define the Statistical Significance Filter -- 6.5 ACOS Retrievals of the Atmospheric State from Japan's GOSAT Satellite -- 6.6 Discussion -- References -- 7 All Realizations All the Time -- Abstract -- 7.1 Introduction -- 7.2 Simulation -- 7.3 Decision Making -- 7.4 Geostatistical Simulation -- 7.5 Resource Decision Making -- 7.6 Alternatives to All Realizations -- 7.7 Concluding Remarks -- Acknowledgements -- References -- 8 Binary Coefficients Redux -- Abstract -- 8.1 Introduction -- 8.2 Empirical Comparisons and a Taxonomy -- 8.3 Effects of Rare and Endemic Taxa -- 8.4 Adjusting for Poor Sampling -- 8.5 Metric? Euclidean? -- 8.6 From Expected Values to Null Association -- 8.7 Illustrative Example -- 8.8 Discussion and Conclusions -- 8.9 Summary -- Acknowledgements -- References -- 9 Tracking Plurigaussian Simulations -- Abstract -- 9.1 Introduction -- 9.2 Review of Complex Networks -- 9.3 Network Analysis of Google Citations of Plurigaussian Simulations -- 9.3.1 Building a Citation Network -- 9.4 Diffusion of the New Method into Industry -- 9.4.1 Co-authors and Repeat Co-authors from Industry -- 9.4.2 Surveys of Academics and Consultants -- 9.5 Conclusions and Perspectives for Future Work -- 9.5.1 What Lessons Can Be Learned from the Study for Policy-Makers -- Acknowledgements -- Appendix 9.1 -- References.
10 Mathematical Geosciences: Local Singularity Analysis of Nonlinear Earth Processes and Extreme Geo-Events -- Abstract -- 10.1 Introduction -- 10.2 What Is Mathematical Geosciences or Geomathematics? -- 10.3 What Contributions Has MG Made to the Geosciences? -- 10.4 Frontiers of Earth Science and Opportunities of MG -- 10.5 Fractal Density and Singularity Analysis of Nonlinear Geo-Processes and Extreme Geo-Events -- 10.5.1 Fractal Density -- 10.5.2 Density-Scale Power-Law Model and Singularity -- 10.5.3 Multifractal Density -- 10.5.4 Fractal Density Structure and Clustering Distribution -- 10.6 Fractal Integral and Fractal Differential Operations of Nonlinear Functions -- 10.7 Earth Dynamic Processes and Extreme Events -- 10.7.1 Phase Transition -- 10.7.2 Self-organized Criticality -- 10.7.3 Multiplicative Cascade Processes -- 10.8 Fractal Density of Lithosphere Rheology in Phase Transition Zones and Association with Earthquakes -- 10.8.1 Rheology Constitutive Equation -- 10.8.2 Rheology and Phase Transition -- 10.8.3 Frequency-Depth Fractal Density Distribution and Singularity Analysis of Earthquakes -- 10.9 Discussion and Conclusions -- Acknowledgements -- References -- General Applications -- 11 Electrofacies in Reservoir Characterization -- Abstract -- 11.1 Introduction -- 11.2 The Amal Field of Libya -- 11.3 Electrofacies Analysis -- 11.3.1 Choice of Log Traces for Electrofacies Calculation -- 11.3.2 Standardization of Log Traces -- 11.3.3 Estimating the Number of Distinct Electrofacies -- 11.3.4 Assigning Well Log Intervals to Electrofacies -- 11.3.5 Converting the Electrofacies Classification into a Prediction Function -- 11.4 What Do Amal Electrofacies Mean? -- 11.4.1 Lithologic Description of Amal Electrofacies -- 11.5 Conclusions -- Acknowledgements -- References -- 12 Shoreline Extrapolations -- 12.1 Three Problems, One Theoretical Tool.
12.2 Median Set -- 12.3 Median and Average for Non Ordered Sets -- 12.4 Extrapolations via the Quench Function -- 12.5 Accretion and Homotopy -- 12.6 Conclusion -- References -- 13 An Introduction to the Spatio-Temporal Analysis of Satellite Remote Sensing Data for Geostatisticians -- 13.1 Introduction -- 13.2 Satellite Images -- 13.2.1 Access and Analysis of Satellite Images with R -- 13.3 Derived Variables from Remote Sensing Data -- 13.4 Pre-processing -- 13.5 Spatial Interpolation -- 13.6 Spatio-Temporal Interpolation -- 13.6.1 Geostatistical R Packages -- 13.7 Conclusions -- References -- 14 Flint Drinking Water Crisis: A First Attempt to Model Geostatistically the Space-Time Distribution of Water Lead Levels -- Abstract -- 14.1 Introduction -- 14.2 Materials and Methods -- 14.2.1 Datasets -- 14.2.2 Space-Time Kriging and Covariance Models -- 14.2.3 Accounting for Secondary Information -- 14.2.4 Cross-Validation -- 14.3 Results and Discussion -- 14.3.1 Spatial Distribution -- 14.3.2 Temporal Trend Modeling -- 14.3.3 Variography -- 14.3.4 Cross-Validation Analysis -- 14.4 Conclusions -- Acknowledgements -- References -- 15 Statistical Parametric Mapping for Geoscience Applications -- Abstract -- 15.1 Introduction -- 15.2 Anomaly Detection with Statistical Parametric Mapping -- 15.2.1 MultiGaussian Fields -- 15.2.2 Calculating the SPM -- 15.2.2.1 Conditional Differences -- 15.2.2.2 Isolated Regions of Activation -- 15.2.3 Localized Anomaly Detection -- 15.3 Example Problems -- 15.3.1 Anomaly Detection in Images -- 15.3.2 Ground Water Pumping -- 15.3.2.1 Problem Setup -- 15.3.2.2 Results -- 15.4 Summary -- Appendix: Conditional Differences -- References -- 16 Water Chemistry: Are New Challenges Possible from CoDA (Compositional Data Analysis) Point of View? -- Abstract -- 16.1 Water Chemistry Data as Compositional Data.
16.2 Isometric-Log Ratio Transformation: Is This the Key to Decipher the Dynamics of Geochemical Systems?.
author_facet Daya Sagar, B. S.
Cheng, Qiuming.
Agterberg, Frits.
author_variant s b s d sbs sbsd
author2 Cheng, Qiuming.
Agterberg, Frits.
author2_variant q c qc
f a fa
author2_role TeilnehmendeR
TeilnehmendeR
author_sort Daya Sagar, B. S.
title Handbook of Mathematical Geosciences : Fifty Years of IAMG.
title_sub Fifty Years of IAMG.
title_full Handbook of Mathematical Geosciences : Fifty Years of IAMG.
title_fullStr Handbook of Mathematical Geosciences : Fifty Years of IAMG.
title_full_unstemmed Handbook of Mathematical Geosciences : Fifty Years of IAMG.
title_auth Handbook of Mathematical Geosciences : Fifty Years of IAMG.
title_new Handbook of Mathematical Geosciences :
title_sort handbook of mathematical geosciences : fifty years of iamg.
publisher Springer International Publishing AG,
publishDate 2018
physical 1 online resource (911 pages)
edition 1st ed.
contents Intro -- Foreword -- Preface -- Contents -- Editors and Contributors -- Theory -- 1 Kriging, Splines, Conditional Simulation, Bayesian Inversion and Ensemble Kalman Filtering -- Abstract -- 1.1 Introduction -- 1.2 Deterministic Aspects of Geostatistics -- 1.2.1 Simple Stationary Kriging -- 1.2.2 Kriging with Intrinsic Random Functions of Order k -- 1.2.3 Kriging Extensions -- 1.2.3.1 Generalization of Kriging to the Interpolation of Average Values -- 1.2.3.2 Error CoKriging -- 1.2.3.3 Dual Kriging -- 1.2.4 Kriging and Splines -- 1.2.4.1 Interpolating Splines -- 1.2.4.2 Smoothing Splines -- 1.2.4.3 Kriging and Regularization-The Discrete Case -- 1.2.5 Kriging and Bayesian Inversion -- 1.2.5.1 Bayesian Linear Inversion -- 1.2.5.2 Kriging and Bayesian Inversion -- 1.2.6 Energy-Based Versus Probabilistic Estimates -- 1.2.7 Conclusion on Kriging -- 1.3 Stochastic Aspects of Geostatistics: Conditional Simulation -- 1.3.1 Method 1: "Smooth Plus Rough" or "Rough Plus Smooth" Algorithm -- 1.3.2 Method 2: Sequential Gaussian Simulation (SGS) -- 1.3.3 Spectrum and Conditional Simulation -- 1.4 Geostatistical Inversion of Seismic Data -- 1.4.1 Deterministic Seismic Inversion -- 1.4.2 Geostatistical Inversion (GI) -- 1.5 Kalman Filtering and Ensemble Kalman Filtering -- 1.5.1 Kalman Filtering (KF) -- 1.5.2 Constraining Reservoir Models by Production Data -- 1.5.3 Ensemble Kalman Filtering (EnKF) Versus Conditional Simulation -- 1.5.4 Ensemble Kalman Filtering and Its Relationship with CoKriging -- 1.6 Beyond the Formal Relationship Between Geostatistics and Bayes -- 1.6.1 Two Identical Formalisms but Different Assumptions -- 1.6.2 Model Falsifiability -- 1.6.3 Looking Ahead: Machine Learning and Falsifiability -- 1.7 Conclusion -- Acknowledgements -- References -- 2 A Statistical Commentary on Mineral Prospectivity Analysis -- 2.1 Introduction.
2.2 Example Data -- 2.3 Logistic Regression -- 2.3.1 Basics of Logistic Regression -- 2.3.2 Flexibility and Validity -- 2.3.3 Fitting Procedure and Implicit Assumptions -- 2.3.4 Pixel Size and Model Consistency -- 2.4 Poisson Point Process Models -- 2.4.1 Logistic Regression with Infinitesimal Pixels -- 2.4.2 Poisson Point Process -- 2.4.3 Fitting a Poisson Point Process Model -- 2.4.4 Murchison Example -- 2.4.5 Statistical Inference -- 2.4.6 Diagnostics -- 2.4.7 Rationale for Prediction -- 2.5 Monotone Regression -- 2.6 Nonparametric Curve Estimation -- 2.7 ROC Curves -- 2.8 Recursive Partitioning -- References -- 3 Testing Joint Conditional Independence of Categorical Random Variables with a Standard Log-Likelihood Ratio Test -- 3.1 Introduction -- 3.2 From Contingency Tables to Log-Linear Models -- 3.3 Independence, Conditional Independence of Random Variables -- 3.4 Logistic Regression, and Its Special Case of Weights-of-Evidence -- 3.5 Hammersley-Clifford Theorem -- 3.6 Testing Joint Conditional Independence of Categorical Random Variables -- 3.7 Conditional Distribution, Logistic Regression -- 3.8 Practical Applications -- 3.8.1 Practical Application with Fabricated Indicator Data -- 3.9 Discussion and Conclusions -- References -- 4 Modelling Compositional Data. The Sample Space Approach -- 4.1 Introduction -- 4.2 Scale Invariance, Key Principle of Compositions -- 4.3 The Simplex as Sample Space of Compositions -- 4.4 Perturbation, a Natural Shift Operation on Compositions -- 4.5 Conditions on Metrics for Compositions -- 4.6 Consequences of the Aitchison Geometry in the Sample Space of Compositional Data -- 4.7 Conclusions -- References -- 5 Properties of Sums of Geological Random Variables -- Abstract -- 5.1 Introduction -- 5.2 Preliminaries -- 5.2.1 Bounds -- 5.3 Thumbnail Case Studies -- 5.3.1 USGS Oil and Gas Resource Projections.
5.3.2 USGS Probabilistic Assessment of CO2 Storage Capacity -- 5.3.3 Cupolas and Oil and Gas Resource Assessment -- 5.4 Concluding Remarks -- References -- 6 A Statistical Analysis of the Jacobian in Retrievals of Satellite Data -- 6.1 Introduction -- 6.2 A Statistical Framework for Satellite Retrievals -- 6.3 The Jacobian Matrix and its Unit-Free Version -- 6.4 Statistical Significance Filter -- 6.4.1 Hypothesis Tests -- 6.4.2 Distribution Theory for the Robust Test Statistic -- 6.4.3 Multiple Hypothesis Tests Define the Statistical Significance Filter -- 6.5 ACOS Retrievals of the Atmospheric State from Japan's GOSAT Satellite -- 6.6 Discussion -- References -- 7 All Realizations All the Time -- Abstract -- 7.1 Introduction -- 7.2 Simulation -- 7.3 Decision Making -- 7.4 Geostatistical Simulation -- 7.5 Resource Decision Making -- 7.6 Alternatives to All Realizations -- 7.7 Concluding Remarks -- Acknowledgements -- References -- 8 Binary Coefficients Redux -- Abstract -- 8.1 Introduction -- 8.2 Empirical Comparisons and a Taxonomy -- 8.3 Effects of Rare and Endemic Taxa -- 8.4 Adjusting for Poor Sampling -- 8.5 Metric? Euclidean? -- 8.6 From Expected Values to Null Association -- 8.7 Illustrative Example -- 8.8 Discussion and Conclusions -- 8.9 Summary -- Acknowledgements -- References -- 9 Tracking Plurigaussian Simulations -- Abstract -- 9.1 Introduction -- 9.2 Review of Complex Networks -- 9.3 Network Analysis of Google Citations of Plurigaussian Simulations -- 9.3.1 Building a Citation Network -- 9.4 Diffusion of the New Method into Industry -- 9.4.1 Co-authors and Repeat Co-authors from Industry -- 9.4.2 Surveys of Academics and Consultants -- 9.5 Conclusions and Perspectives for Future Work -- 9.5.1 What Lessons Can Be Learned from the Study for Policy-Makers -- Acknowledgements -- Appendix 9.1 -- References.
10 Mathematical Geosciences: Local Singularity Analysis of Nonlinear Earth Processes and Extreme Geo-Events -- Abstract -- 10.1 Introduction -- 10.2 What Is Mathematical Geosciences or Geomathematics? -- 10.3 What Contributions Has MG Made to the Geosciences? -- 10.4 Frontiers of Earth Science and Opportunities of MG -- 10.5 Fractal Density and Singularity Analysis of Nonlinear Geo-Processes and Extreme Geo-Events -- 10.5.1 Fractal Density -- 10.5.2 Density-Scale Power-Law Model and Singularity -- 10.5.3 Multifractal Density -- 10.5.4 Fractal Density Structure and Clustering Distribution -- 10.6 Fractal Integral and Fractal Differential Operations of Nonlinear Functions -- 10.7 Earth Dynamic Processes and Extreme Events -- 10.7.1 Phase Transition -- 10.7.2 Self-organized Criticality -- 10.7.3 Multiplicative Cascade Processes -- 10.8 Fractal Density of Lithosphere Rheology in Phase Transition Zones and Association with Earthquakes -- 10.8.1 Rheology Constitutive Equation -- 10.8.2 Rheology and Phase Transition -- 10.8.3 Frequency-Depth Fractal Density Distribution and Singularity Analysis of Earthquakes -- 10.9 Discussion and Conclusions -- Acknowledgements -- References -- General Applications -- 11 Electrofacies in Reservoir Characterization -- Abstract -- 11.1 Introduction -- 11.2 The Amal Field of Libya -- 11.3 Electrofacies Analysis -- 11.3.1 Choice of Log Traces for Electrofacies Calculation -- 11.3.2 Standardization of Log Traces -- 11.3.3 Estimating the Number of Distinct Electrofacies -- 11.3.4 Assigning Well Log Intervals to Electrofacies -- 11.3.5 Converting the Electrofacies Classification into a Prediction Function -- 11.4 What Do Amal Electrofacies Mean? -- 11.4.1 Lithologic Description of Amal Electrofacies -- 11.5 Conclusions -- Acknowledgements -- References -- 12 Shoreline Extrapolations -- 12.1 Three Problems, One Theoretical Tool.
12.2 Median Set -- 12.3 Median and Average for Non Ordered Sets -- 12.4 Extrapolations via the Quench Function -- 12.5 Accretion and Homotopy -- 12.6 Conclusion -- References -- 13 An Introduction to the Spatio-Temporal Analysis of Satellite Remote Sensing Data for Geostatisticians -- 13.1 Introduction -- 13.2 Satellite Images -- 13.2.1 Access and Analysis of Satellite Images with R -- 13.3 Derived Variables from Remote Sensing Data -- 13.4 Pre-processing -- 13.5 Spatial Interpolation -- 13.6 Spatio-Temporal Interpolation -- 13.6.1 Geostatistical R Packages -- 13.7 Conclusions -- References -- 14 Flint Drinking Water Crisis: A First Attempt to Model Geostatistically the Space-Time Distribution of Water Lead Levels -- Abstract -- 14.1 Introduction -- 14.2 Materials and Methods -- 14.2.1 Datasets -- 14.2.2 Space-Time Kriging and Covariance Models -- 14.2.3 Accounting for Secondary Information -- 14.2.4 Cross-Validation -- 14.3 Results and Discussion -- 14.3.1 Spatial Distribution -- 14.3.2 Temporal Trend Modeling -- 14.3.3 Variography -- 14.3.4 Cross-Validation Analysis -- 14.4 Conclusions -- Acknowledgements -- References -- 15 Statistical Parametric Mapping for Geoscience Applications -- Abstract -- 15.1 Introduction -- 15.2 Anomaly Detection with Statistical Parametric Mapping -- 15.2.1 MultiGaussian Fields -- 15.2.2 Calculating the SPM -- 15.2.2.1 Conditional Differences -- 15.2.2.2 Isolated Regions of Activation -- 15.2.3 Localized Anomaly Detection -- 15.3 Example Problems -- 15.3.1 Anomaly Detection in Images -- 15.3.2 Ground Water Pumping -- 15.3.2.1 Problem Setup -- 15.3.2.2 Results -- 15.4 Summary -- Appendix: Conditional Differences -- References -- 16 Water Chemistry: Are New Challenges Possible from CoDA (Compositional Data Analysis) Point of View? -- Abstract -- 16.1 Water Chemistry Data as Compositional Data.
16.2 Isometric-Log Ratio Transformation: Is This the Key to Decipher the Dynamics of Geochemical Systems?.
isbn 9783319789996
9783319789989
callnumber-first Q - Science
callnumber-subject QE - Geology
callnumber-label QE1-996
callnumber-sort QE 11 3996.5
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5437360
illustrated Not Illustrated
oclc_num 1043913114
work_keys_str_mv AT dayasagarbs handbookofmathematicalgeosciencesfiftyyearsofiamg
AT chengqiuming handbookofmathematicalgeosciencesfiftyyearsofiamg
AT agterbergfrits handbookofmathematicalgeosciencesfiftyyearsofiamg
status_str n
ids_txt_mv (MiAaPQ)5005437360
(Au-PeEL)EBL5437360
(OCoLC)1043913114
carrierType_str_mv cr
is_hierarchy_title Handbook of Mathematical Geosciences : Fifty Years of IAMG.
author2_original_writing_str_mv noLinkedField
noLinkedField
marc_error Info : Unimarc and ISO-8859-1 translations identical, choosing ISO-8859-1. --- [ 856 : z ]
_version_ 1792331054768455680
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11066nam a22004573i 4500</leader><controlfield tag="001">5005437360</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073831.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2018 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319789996</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783319789989</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5005437360</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL5437360</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1043913114</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Daya Sagar, B. S.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of Mathematical Geosciences :</subfield><subfield code="b">Fifty Years of IAMG.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">Ã2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (911 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Foreword -- Preface -- Contents -- Editors and Contributors -- Theory -- 1 Kriging, Splines, Conditional Simulation, Bayesian Inversion and Ensemble Kalman Filtering -- Abstract -- 1.1 Introduction -- 1.2 Deterministic Aspects of Geostatistics -- 1.2.1 Simple Stationary Kriging -- 1.2.2 Kriging with Intrinsic Random Functions of Order k -- 1.2.3 Kriging Extensions -- 1.2.3.1 Generalization of Kriging to the Interpolation of Average Values -- 1.2.3.2 Error CoKriging -- 1.2.3.3 Dual Kriging -- 1.2.4 Kriging and Splines -- 1.2.4.1 Interpolating Splines -- 1.2.4.2 Smoothing Splines -- 1.2.4.3 Kriging and Regularization-The Discrete Case -- 1.2.5 Kriging and Bayesian Inversion -- 1.2.5.1 Bayesian Linear Inversion -- 1.2.5.2 Kriging and Bayesian Inversion -- 1.2.6 Energy-Based Versus Probabilistic Estimates -- 1.2.7 Conclusion on Kriging -- 1.3 Stochastic Aspects of Geostatistics: Conditional Simulation -- 1.3.1 Method 1: "Smooth Plus Rough" or "Rough Plus Smooth" Algorithm -- 1.3.2 Method 2: Sequential Gaussian Simulation (SGS) -- 1.3.3 Spectrum and Conditional Simulation -- 1.4 Geostatistical Inversion of Seismic Data -- 1.4.1 Deterministic Seismic Inversion -- 1.4.2 Geostatistical Inversion (GI) -- 1.5 Kalman Filtering and Ensemble Kalman Filtering -- 1.5.1 Kalman Filtering (KF) -- 1.5.2 Constraining Reservoir Models by Production Data -- 1.5.3 Ensemble Kalman Filtering (EnKF) Versus Conditional Simulation -- 1.5.4 Ensemble Kalman Filtering and Its Relationship with CoKriging -- 1.6 Beyond the Formal Relationship Between Geostatistics and Bayes -- 1.6.1 Two Identical Formalisms but Different Assumptions -- 1.6.2 Model Falsifiability -- 1.6.3 Looking Ahead: Machine Learning and Falsifiability -- 1.7 Conclusion -- Acknowledgements -- References -- 2 A Statistical Commentary on Mineral Prospectivity Analysis -- 2.1 Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2 Example Data -- 2.3 Logistic Regression -- 2.3.1 Basics of Logistic Regression -- 2.3.2 Flexibility and Validity -- 2.3.3 Fitting Procedure and Implicit Assumptions -- 2.3.4 Pixel Size and Model Consistency -- 2.4 Poisson Point Process Models -- 2.4.1 Logistic Regression with Infinitesimal Pixels -- 2.4.2 Poisson Point Process -- 2.4.3 Fitting a Poisson Point Process Model -- 2.4.4 Murchison Example -- 2.4.5 Statistical Inference -- 2.4.6 Diagnostics -- 2.4.7 Rationale for Prediction -- 2.5 Monotone Regression -- 2.6 Nonparametric Curve Estimation -- 2.7 ROC Curves -- 2.8 Recursive Partitioning -- References -- 3 Testing Joint Conditional Independence of Categorical Random Variables with a Standard Log-Likelihood Ratio Test -- 3.1 Introduction -- 3.2 From Contingency Tables to Log-Linear Models -- 3.3 Independence, Conditional Independence of Random Variables -- 3.4 Logistic Regression, and Its Special Case of Weights-of-Evidence -- 3.5 Hammersley-Clifford Theorem -- 3.6 Testing Joint Conditional Independence of Categorical Random Variables -- 3.7 Conditional Distribution, Logistic Regression -- 3.8 Practical Applications -- 3.8.1 Practical Application with Fabricated Indicator Data -- 3.9 Discussion and Conclusions -- References -- 4 Modelling Compositional Data. The Sample Space Approach -- 4.1 Introduction -- 4.2 Scale Invariance, Key Principle of Compositions -- 4.3 The Simplex as Sample Space of Compositions -- 4.4 Perturbation, a Natural Shift Operation on Compositions -- 4.5 Conditions on Metrics for Compositions -- 4.6 Consequences of the Aitchison Geometry in the Sample Space of Compositional Data -- 4.7 Conclusions -- References -- 5 Properties of Sums of Geological Random Variables -- Abstract -- 5.1 Introduction -- 5.2 Preliminaries -- 5.2.1 Bounds -- 5.3 Thumbnail Case Studies -- 5.3.1 USGS Oil and Gas Resource Projections.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3.2 USGS Probabilistic Assessment of CO2 Storage Capacity -- 5.3.3 Cupolas and Oil and Gas Resource Assessment -- 5.4 Concluding Remarks -- References -- 6 A Statistical Analysis of the Jacobian in Retrievals of Satellite Data -- 6.1 Introduction -- 6.2 A Statistical Framework for Satellite Retrievals -- 6.3 The Jacobian Matrix and its Unit-Free Version -- 6.4 Statistical Significance Filter -- 6.4.1 Hypothesis Tests -- 6.4.2 Distribution Theory for the Robust Test Statistic -- 6.4.3 Multiple Hypothesis Tests Define the Statistical Significance Filter -- 6.5 ACOS Retrievals of the Atmospheric State from Japan's GOSAT Satellite -- 6.6 Discussion -- References -- 7 All Realizations All the Time -- Abstract -- 7.1 Introduction -- 7.2 Simulation -- 7.3 Decision Making -- 7.4 Geostatistical Simulation -- 7.5 Resource Decision Making -- 7.6 Alternatives to All Realizations -- 7.7 Concluding Remarks -- Acknowledgements -- References -- 8 Binary Coefficients Redux -- Abstract -- 8.1 Introduction -- 8.2 Empirical Comparisons and a Taxonomy -- 8.3 Effects of Rare and Endemic Taxa -- 8.4 Adjusting for Poor Sampling -- 8.5 Metric? Euclidean? -- 8.6 From Expected Values to Null Association -- 8.7 Illustrative Example -- 8.8 Discussion and Conclusions -- 8.9 Summary -- Acknowledgements -- References -- 9 Tracking Plurigaussian Simulations -- Abstract -- 9.1 Introduction -- 9.2 Review of Complex Networks -- 9.3 Network Analysis of Google Citations of Plurigaussian Simulations -- 9.3.1 Building a Citation Network -- 9.4 Diffusion of the New Method into Industry -- 9.4.1 Co-authors and Repeat Co-authors from Industry -- 9.4.2 Surveys of Academics and Consultants -- 9.5 Conclusions and Perspectives for Future Work -- 9.5.1 What Lessons Can Be Learned from the Study for Policy-Makers -- Acknowledgements -- Appendix 9.1 -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10 Mathematical Geosciences: Local Singularity Analysis of Nonlinear Earth Processes and Extreme Geo-Events -- Abstract -- 10.1 Introduction -- 10.2 What Is Mathematical Geosciences or Geomathematics? -- 10.3 What Contributions Has MG Made to the Geosciences? -- 10.4 Frontiers of Earth Science and Opportunities of MG -- 10.5 Fractal Density and Singularity Analysis of Nonlinear Geo-Processes and Extreme Geo-Events -- 10.5.1 Fractal Density -- 10.5.2 Density-Scale Power-Law Model and Singularity -- 10.5.3 Multifractal Density -- 10.5.4 Fractal Density Structure and Clustering Distribution -- 10.6 Fractal Integral and Fractal Differential Operations of Nonlinear Functions -- 10.7 Earth Dynamic Processes and Extreme Events -- 10.7.1 Phase Transition -- 10.7.2 Self-organized Criticality -- 10.7.3 Multiplicative Cascade Processes -- 10.8 Fractal Density of Lithosphere Rheology in Phase Transition Zones and Association with Earthquakes -- 10.8.1 Rheology Constitutive Equation -- 10.8.2 Rheology and Phase Transition -- 10.8.3 Frequency-Depth Fractal Density Distribution and Singularity Analysis of Earthquakes -- 10.9 Discussion and Conclusions -- Acknowledgements -- References -- General Applications -- 11 Electrofacies in Reservoir Characterization -- Abstract -- 11.1 Introduction -- 11.2 The Amal Field of Libya -- 11.3 Electrofacies Analysis -- 11.3.1 Choice of Log Traces for Electrofacies Calculation -- 11.3.2 Standardization of Log Traces -- 11.3.3 Estimating the Number of Distinct Electrofacies -- 11.3.4 Assigning Well Log Intervals to Electrofacies -- 11.3.5 Converting the Electrofacies Classification into a Prediction Function -- 11.4 What Do Amal Electrofacies Mean? -- 11.4.1 Lithologic Description of Amal Electrofacies -- 11.5 Conclusions -- Acknowledgements -- References -- 12 Shoreline Extrapolations -- 12.1 Three Problems, One Theoretical Tool.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.2 Median Set -- 12.3 Median and Average for Non Ordered Sets -- 12.4 Extrapolations via the Quench Function -- 12.5 Accretion and Homotopy -- 12.6 Conclusion -- References -- 13 An Introduction to the Spatio-Temporal Analysis of Satellite Remote Sensing Data for Geostatisticians -- 13.1 Introduction -- 13.2 Satellite Images -- 13.2.1 Access and Analysis of Satellite Images with R -- 13.3 Derived Variables from Remote Sensing Data -- 13.4 Pre-processing -- 13.5 Spatial Interpolation -- 13.6 Spatio-Temporal Interpolation -- 13.6.1 Geostatistical R Packages -- 13.7 Conclusions -- References -- 14 Flint Drinking Water Crisis: A First Attempt to Model Geostatistically the Space-Time Distribution of Water Lead Levels -- Abstract -- 14.1 Introduction -- 14.2 Materials and Methods -- 14.2.1 Datasets -- 14.2.2 Space-Time Kriging and Covariance Models -- 14.2.3 Accounting for Secondary Information -- 14.2.4 Cross-Validation -- 14.3 Results and Discussion -- 14.3.1 Spatial Distribution -- 14.3.2 Temporal Trend Modeling -- 14.3.3 Variography -- 14.3.4 Cross-Validation Analysis -- 14.4 Conclusions -- Acknowledgements -- References -- 15 Statistical Parametric Mapping for Geoscience Applications -- Abstract -- 15.1 Introduction -- 15.2 Anomaly Detection with Statistical Parametric Mapping -- 15.2.1 MultiGaussian Fields -- 15.2.2 Calculating the SPM -- 15.2.2.1 Conditional Differences -- 15.2.2.2 Isolated Regions of Activation -- 15.2.3 Localized Anomaly Detection -- 15.3 Example Problems -- 15.3.1 Anomaly Detection in Images -- 15.3.2 Ground Water Pumping -- 15.3.2.1 Problem Setup -- 15.3.2.2 Results -- 15.4 Summary -- Appendix: Conditional Differences -- References -- 16 Water Chemistry: Are New Challenges Possible from CoDA (Compositional Data Analysis) Point of View? -- Abstract -- 16.1 Water Chemistry Data as Compositional Data.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">16.2 Isometric-Log Ratio Transformation: Is This the Key to Decipher the Dynamics of Geochemical Systems?.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Qiuming.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agterberg, Frits.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Daya Sagar, B. S.</subfield><subfield code="t">Handbook of Mathematical Geosciences</subfield><subfield code="d">Cham : Springer International Publishing AG,c2018</subfield><subfield code="z">9783319789989</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5437360</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>