Stochastic Transport in Upper Ocean Dynamics II : : STUOD 2022 Workshop, London, UK, September 26-29.

Saved in:
Bibliographic Details
Superior document:Mathematics of Planet Earth Series ; v.11
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer,, 2023.
©2024.
Year of Publication:2023
Edition:1st ed.
Language:English
Series:Mathematics of Planet Earth Series
Online Access:
Physical Description:1 online resource (347 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Internal Tides Energy Transfers and Interactions with the Mesoscale Circulation in Two Contrasted Areas of the North Atlantic
  • 1 Introduction
  • 2 Governing Equations and Energy Budget
  • 3 Data and Method
  • 3.1 eNATL60 Simulation
  • 3.2 Filtering and Computing Methods
  • 4 Results
  • 4.1 Life Cycle of the Internal Tide
  • 4.2 Importance of the Different Contributions in the Energy Transfers
  • 4.2.1 Detailed View of Coupling Terms
  • 4.2.2 Modal Energy Budget
  • 5 Conclusion
  • References
  • Sparse-Stochastic Model Reduction for 2D Euler Equations
  • 1 Introduction
  • 2 Sparse-Stochastic Model Reduction
  • 3 Numerical Simulations
  • 4 Conclusions and Outlook
  • References
  • Effect of Transport Noise on Kelvin-Helmholtz Instability
  • 1 Introduction
  • 2 Model Formulation
  • 2.1 Point Vortex Method for Inviscid Flows
  • 2.2 Point Vortex Method for Viscous Flows
  • 3 Point Vortex Method with Environmental Noise
  • 3.1 Transport Noise and Deterministic Scaling Limit
  • 3.2 A Digression on the Theoretical Selection of the Noise
  • 4 Numerical Results
  • 4.1 Setting: Kelvin-Helmholtz Instability
  • 4.1.1 The Role of Intrinsic Instability
  • 4.1.2 The Role of Viscosity and Stability Restoration
  • 4.2 Numerical Results on Environmental Noise
  • 4.2.1 Selection of Divergence Free Field
  • 4.2.2 Positions and Intensities of Fixed Vortices
  • 4.2.3 Effect of Small Scale Common Noise
  • 4.3 Diagnostics
  • 5 Concluding Remarks
  • References
  • On the 3D Navier-Stokes Equations with Stochastic Lie Transport
  • Introduction
  • 1 Introduction
  • 2 Preliminaries
  • 2.1 Elementary Notation
  • 2.2 Functional Framework
  • 2.3 The SALT Operator
  • 3 The Velocity Equation on the Torus
  • 3.1 Definitions and Results
  • 3.2 Operator Bounds
  • 3.3 Proof of Proposition 3.2
  • 3.4 Proofs of Theorems 3.1 and 3.6.
  • 4 The Vorticity Equation on a Bounded Main
  • 4.1 Deriving the Equation
  • 4.2 Definitions and Results
  • 4.3 Operator Bounds
  • 4.4 Proof of Theorem 4.3
  • 5 Appendices
  • 5.1 Proofs from Sects.2.3, 3.2, and 4.3
  • 5.2 A Conversion from Stratonovich to Itô
  • 5.3 Abstract Solution Criterion I
  • 5.4 Abstract Solution Criterion II
  • References
  • On the Interactions Between Mean Flows and Inertial Gravity Waves in the WKB Approximation
  • 1 Introduction
  • 2 Deterministic 3D Euler-Boussinesq (EB) Internal Gravity Waves
  • 2.1 Lagrangian Formulation of the WMFI Equations at Leading Order
  • 2.2 Hamiltonian Structure for the WMFI Equations at Leading Order
  • 3 Stochastic WMFI
  • 4 Conclusion
  • Appendix: Asymptotic Expansion
  • References
  • Toward a Stochastic Parameterization for Oceanic Deep Convection
  • 1 Introduction
  • 2 Stochastic Formulation of Direct Non-hydrostatic Pressure Correction
  • 3 Numerical Implementation and Simulations
  • 3.1 Stochastic, Non-hydrostatic Pressure Correction
  • 3.2 Numerical Experiments
  • 4 Results
  • 5 Conclusion and Perspectives
  • References
  • Comparison of Stochastic Parametrization Schemes Using Data Assimilation on Triad Models
  • 1 Introduction
  • 2 Reduced Order Models for Incompressible Fluids
  • 2.1 Reduced Order Models for the 3D Euler Equation
  • 2.2 Stochastic Parametrizations for the 3D Euler Equation
  • 2.2.1 Modelling Under the Stochastic Advection by Lie Transport Principle
  • 2.2.2 Modeling Under the Location Uncertainty Principle
  • 2.3 Triad Model Comparison
  • 3 Data Assimilation Comparison
  • 3.1 Numerical Studies
  • 3.1.1 Numerical Implementation
  • 3.1.2 Data Assimilation for the Deterministic Model
  • 3.1.3 Reduced Order Model Realisations
  • 3.1.4 Model Statistics
  • 3.1.5 Data Assimilation
  • 4 Conclusions
  • Appendix 1: Notation and Basic Identities
  • Notation
  • Vector Identities.
  • Appendix 2: Derivation of Triad Models
  • Deterministic Euler
  • SALT Euler
  • LU Euler
  • Appendix 3: Supplementary Numerics
  • Calibration of the Noise Amplitude
  • Data Assimilation Verification
  • References
  • An Explicit Method to Determine Casimirs in 2D Geophysical Flows
  • 1 Introduction
  • 2 Geophysical Flows
  • 3 Explicitly Determining the Casimirs
  • 4 Conclusion
  • References
  • Correlated Structures in a Balanced Motion Interacting with an Internal Wave
  • 1 Introduction
  • 2 Model
  • 3 Methods
  • 3.1 Spectral Proper Orthogonal Decomposition
  • 3.2 Broadband Proper Orthogonal Decomposition
  • 3.2.1 Complex Demodulation of the Wave Field
  • 3.2.2 Link with SPOD
  • 3.2.3 Extended Broadband Proper Orthogonal Decomposition
  • 4 Results
  • 5 Summary and Perspectives
  • References
  • Linear Wave Solutions of a Stochastic Shallow Water Model
  • 1 Introduction
  • 2 Review of RSW-LU
  • 3 Stationary Solution
  • 4 Stochastic Rotating Shallow Water Waves
  • 4.1 Ensemble-Mean Waves Under Homogeneous Noise
  • 4.1.1 Mean Poincaré Waves
  • 4.1.2 Mean Geostrophic Mode
  • 4.2 Path-Wise Waves Under Constant Noise
  • 4.2.1 Stochastic Poincaré Waves
  • 4.2.2 Stochastic Geostrophic Mode
  • 4.3 Approximation of Path-Wise Waves Under Homogeneous Noise
  • 4.3.1 Stochastic Poincaré Waves
  • 4.3.2 Stochastic Geostrophic Mode
  • 4.4 Numerical Illustrations
  • 5 Shallow Water PV Dynamics and Geostrophic Adjustment
  • 6 Conclusions
  • References
  • Analysis of Sea Surface Temperature Variability Using Machine Learning
  • 1 Introduction
  • 2 Method
  • 2.1 Deterministic Model Hypothesis
  • 2.2 Stochastic Model Hypothesis: The Stochastic NbedDyn
  • 3 Numerical Experiments
  • 3.1 Data
  • 3.2 Analysis of the Deterministic Model
  • 3.3 Analysis of the Stochastic Model
  • 4 Conclusion
  • Appendix 1: Training
  • Appendix 2: Parameterization of the Diffusion Function.
  • References
  • Data Assimilation: A Dynamic Homotopy-Based Coupling Approach
  • 1 Introduction
  • 2 Problem Formulation and Background
  • 3 Schrödinger Bridge Approach
  • 4 Homotopy Induced Dynamic Coupling
  • 5 Numerical Implementation
  • 5.1 Ensemble Kalman Mean Field Approximation
  • 5.2 Particle Approximation and Time-Stepping
  • 6 Examples
  • 6.1 Pure Diffusion Processes
  • 6.2 Purely Deterministic Processes
  • 6.3 Linear Gaussian Case
  • 6.4 Nonlinear Diffusion Example
  • 6.5 Lorenz-63 Example
  • 7 Conclusions
  • Appendix 1: Derivation of Control Term Equation
  • Appendix 2: Ensemble Kalman Filter Approximations
  • References
  • Constrained Random Diffeomorphisms for Data Assimilation
  • 1 Introduction
  • 2 Induced Stochastic PDE
  • 3 Comparison with Other Perturbation Schemes
  • 3.1 Comparison with the LU Equations
  • 3.1.1 0-Forms in the LU Framework
  • 3.1.2 n-Forms in the LU Framework
  • 3.2 The SALT Perturbation Scheme
  • 4 Conclusion
  • Appendix: Expression of Tt*θ
  • References
  • Stochastic Compressible Navier-Stokes Equations Under Location Uncertainty
  • 1 Introduction
  • 2 Stochastic Reynolds Transport Theorem
  • 3 Stochastic Compressible Navier-Stokes Equations
  • 3.1 Non-dimensioning
  • 3.2 Continuity
  • 3.3 Momentum
  • 3.4 Energy
  • 3.5 Equation of State
  • 4 Low Mach Approximation
  • 5 Boussinesq-Hydrostatic Approximation
  • 6 Extension to Non-Boussinesq
  • 7 Conclusion
  • Appendix A: Stochastic Reynolds Transport Theorem from Stratonovich to Itō
  • Appendix B: Calculation Rules
  • Distributivity of the Stochastic Transport Operator
  • Work of Random Forces
  • Appendix C: Displacement of a Transported Control Surface
  • References
  • Data Driven Stochastic Primitive Equations with Dynamic Modes Decomposition
  • 1 Introduction
  • 2 Location Uncertainty (LU)
  • 3 Stochastic Boussinesq Equations
  • 4 Methods.
  • 4.1 High Resolution Data Filtering
  • 4.2 Off-Line Noise Modelling Through DMD
  • 4.3 On-Line Noise Reconstruction
  • 5 Results
  • 6 Conclusions
  • References
  • Index.