Wheat Evolution and Domestication.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (689 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface I
  • Preface II
  • Contents
  • List of Figures
  • List of Tables
  • 1 Introduction
  • 1.1 The Importance of Wheat as a Staple Food
  • 1.2 Interest in the Origin and Evolution of Domesticated Wheat
  • 1.3 The Need to Exploit Wild Wheat Relatives for Wheat Improvement
  • References
  • 2 Taxonomy and Evolution of the Tribe Triticeae Dumort
  • 2.1 General Description
  • 2.2 Triticeae Taxonomy
  • 2.3 Time of Origin of the Genera
  • 2.4 Phylogenetic Studies in Perennial Diploid Species
  • 2.5 Genome Analysis of Polyploid Species
  • 2.6 Evolutionary Trends
  • 2.6.1 Steps in the Development of the Tribe
  • 2.6.2 From Tall to Short Plants
  • 2.6.3 From Perennialism to Annualism
  • 2.6.4 From Allogamy to Autogamy
  • 2.6.5 From Simple to Improved Dispersal Units
  • 2.6.6 Changes in Spikes Make-Up
  • 2.6.7 From Symmetric to Asymmetric Karyotype
  • 2.6.8 From Diploidy to Polyploidy
  • 2.6.9 Differences in Genome Size Between Diploid Triticeae Species
  • References
  • 3 Genome Structure of Triticeae Species
  • 3.1 Chromosome Karyotypic Features
  • 3.1.1 Introduction
  • 3.1.2 Centromeres
  • 3.1.3 Telomeres
  • 3.1.4 Nucleolar Organizers
  • 3.1.5 Use of C- and N-Banding for Chromosome Identification
  • 3.2 Main Components of the Triticeae Genomes
  • 3.2.1 Genome Size
  • 3.2.2 Repetitive DNA
  • 3.2.2.1 Satellite DNA
  • 3.2.2.2 Transposable Elements
  • 3.3 Whole Genome Sequencing in Species of the Triticeae
  • 3.3.1 Triticum aestivum L. ssp. aestivum (Bread Wheat)
  • 3.3.1.1 Assembly of the Bread Wheat Genome
  • 3.3.1.2 Protein Coding Genes
  • 3.3.1.3 RNA Genes
  • 3.3.1.4 The Wheat Transcriptome
  • 3.3.2 Triticum turgidum L.
  • 3.3.2.1 Ssp. dicoccoides (Körn.exAsch. and Graebn.) Thell. (Wild Emmer)
  • 3.3.2.2 Ssp. durum (Desf.) Husn. (Macaroni Wheat)
  • 3.3.3 Triticum urartu Tum. ex Gand. (Donor of Bread Wheat A Subgenome).
  • 3.3.4 Aegilops tauschii Coss. (Donor of Bread Wheat D Subgenome)
  • 3.3.5 Species of Aegilops Section Sitopsis (Jaub. and Spach) Zhuk.: Ae. speltoides Tausch
  • Ae. bicornis (Forssk.) Jaub. and Spach
  • Ae. sharonensis Eig
  • Ae. longissima Schweinf. and Muscl.
  • Ae. searsii Feldman and Kislev ex Hammer
  • 3.3.6 Secale cereale L. (Domesticated Rye)
  • 3.3.7 Hordeum vulgare L. (Domesticated Barley)
  • 3.4 Gene Order, Comparative Genomics and Karyotypic Evolution
  • 3.5 Meiotic Recombination in the Wheat Genome
  • References
  • 4 B Chromosomes
  • 4.1 Introduction
  • 4.2 Origin and Molecular Characterization
  • 4.3 Preferential Transmission (Accumulation Mechanism) of B Chromosomes
  • 4.4 Effect on Morphology, Fitness and Meiotic Chromosomal Pairing in Species and Hybrids
  • 4.4.1 Effect on Morphology and Fitness
  • 4.4.2 Effect on Meiotic Chromosome Pairing in Species and Hybrids
  • 4.5 Transcriptional Activity of B Chromosomes
  • References
  • 5 Orphan Genera of the Subtribe Triticineae Simmonds
  • 5.1 General Description of the Subtribe
  • 5.2 Elymus Species with St or E Genome
  • 5.2.1 Group Description
  • 5.2.2 Elymus Species with St Genome
  • 5.2.2.1 Species Description
  • 5.2.2.2 Elymus libanoticus (Hack.) Melderis-A Representative Example
  • Morphological and Geographical Notes
  • Cytology, Cytogenetics and Evolution
  • Crosses with Other Triticineae Species
  • 5.2.3 E. elongatus (Host) Runemark (Based on Ee Genome)
  • 5.2.3.1 Species Description
  • 5.2.3.2 Ssp. elongatus (2n = 2x = 14)
  • Morphological and Geographical Notes
  • Cytology, Cytogenetics and Evolution
  • Crosses with Other Triticineae Species
  • Crosses with Diploids Species
  • Crosses with Tetraploid Species
  • Crosses with Hexaploid Species
  • 5.2.3.3 Ssp. flaccidifolius (Boiss. &amp
  • Heldr.) Runemark (2n = 4x = 28)
  • Morphological and Geographical Notes.
  • Cytology, Cytogenetics and Evolution
  • Crosses with Other Triticineae Species
  • 5.2.3.4 Ssp. turcicus (P. E. McGuire) Melderis (2n = 8x = 56)
  • Morphological and Geographical Notes
  • Cytology, Cytogenetics and Evolution
  • 5.2.3.5 Ssp. ponticus (Podp) Melderis (2n = 10x = 70)
  • Morphological and Geographical Notes
  • Cytology, Cytogenetics and Evolution
  • Crosses with Other Triticineae Species
  • 5.2.4 E. farctus (Viv.) Runemark Ex Melderis (Based on Eb Genome)
  • 5.2.4.1 Species Description
  • 5.2.4.2 Ssp. bessaribicus (Savul. &amp
  • Rayss) Melderis (2n = 2x = 14)
  • Morphological and Geographical Notes
  • Cytology, Cytogenetics and Evolution
  • Crosses with Oter Triticineae Species
  • 5.2.4.3 Ssp. rechingeri (Runemark) Melderis (2n = 4x = 28)
  • 5.2.4.4 Ssp. boreali-Atlanticus (Simonet &amp
  • Guinochet) Melderis (2n = 4x = 28)
  • Morphological and Geographical Notes
  • Cytology, Cytogenetics and Evolution
  • Crosses with Other Triticineae
  • 5.2.4.5 Ssp. farctus (Viv.) Runemark Ex Melderis (2n = 6x = 42)
  • Morphological and Geographical Notes
  • Cytology, Cytogenetics and Evolution
  • Crosses with Other Triticineae Species
  • 5.2.5 Phylogenetic Relationships of St, Ee and Eb Genome Elymus Species with Other Triticineae Species
  • 5.3 Agropyron Gaertner Senso Stricto
  • 5.3.1 Taxonomic Notes
  • 5.3.2 Agropyron cristatum-The Genus Type
  • 5.3.3 Cytology, Cytogenetics and Evolution
  • 5.3.4 Crosses with Other Triticineae Species
  • 5.3.5 Phylogenetic Relationships of Agropyron with Other Triticineae
  • 5.4 Eremopyrum (Ledeb.) Jaub. &amp
  • Spach.
  • 5.4.1 Morphological and Geographical Notes
  • 5.4.2 Cytology, Cytogenetics and Evolution
  • 5.4.3 Phylogenetic Relationships with Other Triticineae Species
  • 5.5 Henrardia C. E. Hubbard
  • 5.5.1 Morphological and Geographical Notes
  • 5.5.2 Cytology, Cytogenetics and Evolution.
  • 5.5.3 Phylogenetic Relationships with Other Triticineae Species
  • 5.6 Dasypyrum (Coss. &amp
  • Durieu) T. Durand
  • 5.6.1 Morphological and Geographical Notes
  • 5.6.2 Cytology, Cytogenetics and Evolution
  • 5.6.2.1 Karyotype and Genome Size
  • 5.6.2.2 Cytogentic Relationship Within and Between the Two Cytotypes of D. breviaristatum
  • 5.6.2.3 Origin of the Tetraploid Cytotype of D. breviaristatum
  • 5.6.2.4 Cytogenetic Relationships Between D. breviaristatum and D. villosum
  • 5.6.2.5 Cytogenetic Relationships Between Dasypyrum Species and Species of Other Triticineae Genera
  • 5.6.3 Phylogeny and Time of Origin
  • 5.6.4 Use of Dasypyrum in Wheat Improvement
  • 5.6.4.1 Production of Cytogenetic Lines Facilitating Identification of Useful Genes, Their Allocation to Chromosomes and Construction of Genetic Maps
  • 5.6.4.2 Production of Translocation Lines of D. villosum Chromosomal Segments in Wheat Chromosomes
  • Production of Translocations via Induction of Homoeologous Pairing
  • Production of Translocations via Irradiation
  • 5.6.4.3 Allocation of Useful Genes to Chromosomes
  • 5.6.4.4 Contribution of Dasypyrum Genes to Wheat Improvement
  • 5.7 Heteranthelium Hochst
  • 5.8 Taeniatherum Nevski
  • 5.8.1 Morphological and Geographical Notes
  • 5.8.2 Cytology, Cytogenetics and Evolution
  • 5.8.3 Phylogeny
  • 5.9 Crithopsis Jaub. &amp
  • Spach.
  • 5.9.1 Morphological and Geographical Notes
  • 5.9.2 Cytology, Cytogenetics and Evolution
  • 5.9.3 Phylogeny
  • 5.10 Concluding Comments
  • 5.10.1 Evolution of the Sub-tribe Triticineae
  • 5.10.2 Appearance of Advanced Traits in Different Genera
  • 5.10.3 Chromosomal Pairing Level in Intergeneric F1 Hybrids
  • 5.10.4 Phylogenetic Scheme of the Triticineae Genera
  • 5.10.4.1 Elymus Species with St, Ee and Eb Genomes
  • 5.10.4.2 The Clade Agropyron-Eremopyrum-Henrardia.
  • 5.10.4.3 The Clade Dasypyrum-Secale-Heteranthelium
  • 5.10.4.4 The Clade Amblyopyrum-Triticum-Aegilops
  • 5.10.4.5 The Clade Taeniatherum-Crithopsis
  • 5.10.5 Evolutionary Changes in the Polyploid Triticineae
  • References
  • 6 Secale L.
  • 6.1 The Genus Secale-Taxonomic Survey
  • 6.2 Secale Species
  • 6.2.1 Introduction
  • 6.2.2 Secale sylvestre Host
  • 6.2.3 Secale strictum (C. Presl) C. Presl
  • 6.2.3.1 Ssp. strictum
  • 6.2.3.2 Secale strictum ssp. africanum (Stapf) K. Hammer
  • 6.2.4 Secale cereale L.
  • 6.2.4.1 Ssp. cereale
  • 6.2.4.2 Ssp. ancestrale Zhuk.
  • 6.3 Cytology, Cytogenetics and Evolution
  • 6.4 Crosses with Other Triticineae Species
  • 6.4.1 Opening Remarks
  • 6.4.2 Chromosome Pairing in Hybrids Between Elymus or Agropyron Species and Secale Species
  • 6.4.3 Chromosome Pairing in Hybrids Between Hordeum and Secale Species
  • 6.4.4 Chromosome Pairing in Hybrids Between Aegilops Species and Secale Species
  • 6.4.5 Chromosome Pairing in Hybrids Between Triticum and Secale Species
  • 6.4.5.1 Chromosome Pairing in Hybrids Between Diploid Wheat and Secale Species
  • 6.4.5.2 Chromosome Pairing in Hybrids Between Tetraploid Wheat and Secale Species
  • 6.4.5.3 Chromosome Pairing in Hybrids Between Hexaploid Wheat and Secale Species
  • 6.5 Phylogeny of Secale
  • 6.5.1 Phylogenetic Relationships Within the Genus Secale
  • 6.5.2 Phylogenetic Relationships Between Secale and Other Triticineae Genera
  • 6.6 Domestication
  • References
  • 7 Classification of the Wheat Group (The Genera Amblyopyrum, Aegilops and Triticum)
  • 7.1 Dilemmas Concerning the Classification of the Wheat Group
  • 7.2 Taxonomic Species Concept Versus Biological Species Concept
  • 7.3 Designation and Classification of Synthetic Allopolyploids
  • 7.4 The Taxonomic Relationships Between Aegilops and Triticum
  • References
  • 8 Amblyopyrum (Jaub. and Spach) Eig.
  • 8.1 Separation of Amblyopyrum from Aegilops.