Strand Corrosion in Prestressed Concrete Structures.

Saved in:
Bibliographic Details
:
Place / Publishing House:Singapore : : Springer,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (261 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 50030719851
ctrlnum (MiAaPQ)50030719851
(Au-PeEL)EBL30719851
(OCoLC)1395909890
collection bib_alma
record_format marc
spelling Wang, Lei.
Strand Corrosion in Prestressed Concrete Structures.
1st ed.
Singapore : Springer, 2023.
©2023.
1 online resource (261 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Preface -- Acknowledgements -- Contents -- About the Author -- 1 Brief Description of Prestressed Concrete Structures -- 1.1 History and Development of PC Structures -- 1.1.1 Reinforced Concrete Structures -- 1.1.2 Prestressed Concrete Structures -- 1.1.3 Main Methods of Prestressing -- 1.1.4 Characteristics of PC Structures -- 1.2 Practical Application of PC Structures -- 1.2.1 Application of Prestressing Technology in Bridges -- 1.2.2 Examples of Prestressing in Bridges -- 1.3 Corrosion of Strand in Prestressed Concrete -- 1.3.1 Mechanisms of Electrochemical Corrosion -- 1.3.2 Mechanisms of Stress Corrosion -- 1.3.3 Influence Factors of Strand Corrosion -- 1.4 Contents of This Book -- References -- 2 Mechanical Behaviors of Corroded Prestressing Strands -- 2.1 Introduction -- 2.2 Corrosion Morphology and Microscopic Damage of Strands -- 2.2.1 Corrosion Morphology of Prestressing Strands -- 2.2.2 Microscopic Damage of Corroded Strands -- 2.3 Corrosion Pits of Prestressing Strands -- 2.4 Probability Distribution of Corrosion Pits -- 2.4.1 Frequency Distribution of Corrosion Pits -- 2.4.2 K-S Test of Pit Size Parameters -- 2.5 Mechanical Behavior of Corroded Prestressing Strands -- 2.5.1 Relation Between Load and Displacement -- 2.5.2 Ultimate Strength, Strain, and Elastic Modulus -- 2.6 Constitutive Model of Prestressing Corroded Strands -- 2.7 Conclusions -- References -- 3 Corrosion-Induced Cracking of Prestressed Concrete -- 3.1 Introduction -- 3.2 Experimental Study on Corrosion-Induced Cracking -- 3.2.1 Filling of Strand Corrosion Products -- 3.2.2 Concrete Cracking Under Combined Prestress and Strand Corrosion -- 3.3 Prediction of Corrosion-Induced Cracking in PC Beams -- 3.3.1 Model for Corrosion-Induced Cracking -- 3.3.2 Model Validation -- 3.4 Meso-scale Modeling of Strand Corrosion-Induced Concrete Cracking.
3.4.1 3D Corrosion Expansion Model of Helical Strand -- 3.4.2 Meso-scale Model of Heterogeneous Concrete -- 3.4.3 Model Validation -- 3.4.4 Influencing Parameters for Corrosion-Induced Cracking -- 3.5 Conclusions -- References -- 4 Bond Behavior Between Strand and Concrete with Corrosive Cracking -- 4.1 Introduction -- 4.2 Bond Behavior of Strand with Corrosive Cracking in Pull-Out Specimens -- 4.2.1 Corrosion-Induced Concrete Cracking -- 4.2.2 Concrete Strain -- 4.2.3 Twisting of Strands -- 4.2.4 Pull-Out Force and Slip -- 4.2.5 Distribution of Bond Stress -- 4.2.6 Bond Strength of Corroded Strand -- 4.3 Bond Behavior of Corroded Strand in PC Beams -- 4.3.1 Corrosion Loss and Corrosion-Induced Crack -- 4.3.2 Effect of Corrosion on Force-Slip Response of Strand -- 4.3.3 Failure Mode and Bond Strength -- 4.3.4 Degradation of Strand Bond and Tensile Strengths -- 4.4 Conclusions -- References -- 5 Bond-Slip Model of Corroded Strand Considering Rotation Effect -- 5.1 Introduction -- 5.2 Bond Strength of Strand Considering Rotation Effect -- 5.2.1 Theoretical Expressions for Bond Strength -- 5.2.2 Model Verification -- 5.3 Model for Bond Strength of Corroded Strand -- 5.3.1 Ultimate Bond Strength of Corroded Strand -- 5.3.2 Corrosion-Induced Pressure at Bond Interface -- 5.3.3 Confining Stress at Bond Failure -- 5.3.4 Model Validation -- 5.4 Model for Bond-Slip Between Corroded Strand and Concrete -- 5.4.1 Method for the Local Bond Characteristics -- 5.4.2 Local Bond-Slip Between Corroded Strand and Concrete -- 5.5 Conclusions -- References -- 6 Prestress Loss and Transfer Length Prediction in Pretensioned Concrete Structures with Corrosive Cracking -- 6.1 Introduction -- 6.2 Calculation of Corrosion-Induced Expansive Pressure -- 6.2.1 Prediction Model of Prestress Loss Under Corrosive Cracking -- 6.2.2 Bond Degradation Due to Strand Corrosion.
6.2.3 Calculation Flow Chart of Prestress Loss -- 6.2.4 Evaluation of Effective Prestress -- 6.2.5 Effective Prestress Evaluation -- 6.2.6 Validation on Prestress Loss Model -- 6.2.7 Prediction of Transfer Length Under Corrosive Cracking -- 6.2.8 Calculation of Transfer Length -- 6.3 Evaluation of the Transfer Length in Corroded PC Beams -- 6.3.1 Specimen Design and Data Analysis -- 6.3.2 Evaluation of Transfer Length Under Corrosive Cracking -- 6.4 Model Validation and Parameter Sensitivity Analysis -- 6.4.1 Verification of Proposed Model -- 6.4.2 Effect of Material Parameters on Expansive Pressure -- 6.4.3 Effect of Material Parameters on Transfer Length -- 6.5 Conclusions -- References -- 7 Secondary Anchorage and Prestress Loss of Fractured Strand in PT Beams -- 7.1 Introduction -- 7.2 Literature Review -- 7.2.1 Bonding Properties of Fractured Strand -- 7.2.2 Prestress Loss of Fractured Strand -- 7.3 Secondary Anchorage of Fractured Strand -- 7.3.1 Strand Fracture Test -- 7.3.2 Mechanism of Secondary Anchorage -- 7.3.3 Secondary Transfer Length After Strand Fracture -- 7.3.4 Residual Prestress in Secondary Anchorage of Fractured Strand -- 7.4 Residual Prestress in PT Beams After Strand Fracture -- 7.4.1 Calculation of Residual Prestress -- 7.4.2 Relation Between Residual Prestress and Strand Fracture Position -- 7.5 Numerical Model for Secondary Anchorage of Fractured Strand -- 7.5.1 Numerical Model Generation -- 7.5.2 Interfacial Bond-Slip Simulation -- 7.5.3 Strand Fracture Simulation -- 7.5.4 Model Validation -- 7.6 Evaluation of Damage Control Section and Flexural Capacity After Strand Fracture -- 7.7 Conclusions -- References -- 8 Flexural Behaviors of Corroded Post-tensioned Concrete Beams -- 8.1 Introduction -- 8.2 Design of Specimens with Different Defects -- 8.3 Effect of Insufficient Grouting on Flexural Behaviors.
8.3.1 Design of Insufficient Grouting -- 8.3.2 Cracking Behavior -- 8.3.3 Load-Deflection Response -- 8.3.4 Ultimate Strength and Failure Mode -- 8.4 Effect of Strand Corrosion in Insufficient Grouting on Flexural Behaviors -- 8.4.1 Corrosion Characteristic of Strand -- 8.4.2 Cracking Behavior -- 8.4.3 Load-Deflection Response -- 8.4.4 Failure Mode and Ultimate Strength -- 8.5 Effect of Strand Corrosion in Full Grouting on Flexural Behaviors -- 8.5.1 Corrosion of Prestressed Concrete Beams -- 8.5.2 Cracking Patterns at the Ultimate State -- 8.5.3 Load-Deflection Response -- 8.5.4 Failure Mode and Ultimate Strength -- 8.6 Conclusions -- References -- 9 Bearing Capacity Prediction of Corroded PT Beams Incorporating Grouting Defects and Bond Degradation -- 9.1 Introduction -- 9.2 Analytical Model for Flexural Capacity of PT Beams -- 9.2.1 Simplified Calculation Method -- 9.2.2 Calculation Procedure -- 9.3 Model Validation -- 9.4 Quantification of Corrosion-Induced Uncoordinated Deformation in Bond-Slip Zone -- 9.4.1 Quantification Principle of Bond-Slip Zone -- 9.4.2 A Quantitative Method for Uncoordinated Deformation -- 9.5 Bearing Capacity Assessment Considering Bond Degradation -- 9.5.1 Bonding Degradation Model -- 9.5.2 Calculation of Bearing Capacity -- 9.5.3 Model Verification -- 9.5.4 Effect of Corrosion on Uncoordinated Deformation -- 9.6 Conclusions -- References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Print version: Wang, Lei Strand Corrosion in Prestressed Concrete Structures Singapore : Springer,c2023 9789819920532
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30719851 Click to View
language English
format eBook
author Wang, Lei.
spellingShingle Wang, Lei.
Strand Corrosion in Prestressed Concrete Structures.
Intro -- Preface -- Acknowledgements -- Contents -- About the Author -- 1 Brief Description of Prestressed Concrete Structures -- 1.1 History and Development of PC Structures -- 1.1.1 Reinforced Concrete Structures -- 1.1.2 Prestressed Concrete Structures -- 1.1.3 Main Methods of Prestressing -- 1.1.4 Characteristics of PC Structures -- 1.2 Practical Application of PC Structures -- 1.2.1 Application of Prestressing Technology in Bridges -- 1.2.2 Examples of Prestressing in Bridges -- 1.3 Corrosion of Strand in Prestressed Concrete -- 1.3.1 Mechanisms of Electrochemical Corrosion -- 1.3.2 Mechanisms of Stress Corrosion -- 1.3.3 Influence Factors of Strand Corrosion -- 1.4 Contents of This Book -- References -- 2 Mechanical Behaviors of Corroded Prestressing Strands -- 2.1 Introduction -- 2.2 Corrosion Morphology and Microscopic Damage of Strands -- 2.2.1 Corrosion Morphology of Prestressing Strands -- 2.2.2 Microscopic Damage of Corroded Strands -- 2.3 Corrosion Pits of Prestressing Strands -- 2.4 Probability Distribution of Corrosion Pits -- 2.4.1 Frequency Distribution of Corrosion Pits -- 2.4.2 K-S Test of Pit Size Parameters -- 2.5 Mechanical Behavior of Corroded Prestressing Strands -- 2.5.1 Relation Between Load and Displacement -- 2.5.2 Ultimate Strength, Strain, and Elastic Modulus -- 2.6 Constitutive Model of Prestressing Corroded Strands -- 2.7 Conclusions -- References -- 3 Corrosion-Induced Cracking of Prestressed Concrete -- 3.1 Introduction -- 3.2 Experimental Study on Corrosion-Induced Cracking -- 3.2.1 Filling of Strand Corrosion Products -- 3.2.2 Concrete Cracking Under Combined Prestress and Strand Corrosion -- 3.3 Prediction of Corrosion-Induced Cracking in PC Beams -- 3.3.1 Model for Corrosion-Induced Cracking -- 3.3.2 Model Validation -- 3.4 Meso-scale Modeling of Strand Corrosion-Induced Concrete Cracking.
3.4.1 3D Corrosion Expansion Model of Helical Strand -- 3.4.2 Meso-scale Model of Heterogeneous Concrete -- 3.4.3 Model Validation -- 3.4.4 Influencing Parameters for Corrosion-Induced Cracking -- 3.5 Conclusions -- References -- 4 Bond Behavior Between Strand and Concrete with Corrosive Cracking -- 4.1 Introduction -- 4.2 Bond Behavior of Strand with Corrosive Cracking in Pull-Out Specimens -- 4.2.1 Corrosion-Induced Concrete Cracking -- 4.2.2 Concrete Strain -- 4.2.3 Twisting of Strands -- 4.2.4 Pull-Out Force and Slip -- 4.2.5 Distribution of Bond Stress -- 4.2.6 Bond Strength of Corroded Strand -- 4.3 Bond Behavior of Corroded Strand in PC Beams -- 4.3.1 Corrosion Loss and Corrosion-Induced Crack -- 4.3.2 Effect of Corrosion on Force-Slip Response of Strand -- 4.3.3 Failure Mode and Bond Strength -- 4.3.4 Degradation of Strand Bond and Tensile Strengths -- 4.4 Conclusions -- References -- 5 Bond-Slip Model of Corroded Strand Considering Rotation Effect -- 5.1 Introduction -- 5.2 Bond Strength of Strand Considering Rotation Effect -- 5.2.1 Theoretical Expressions for Bond Strength -- 5.2.2 Model Verification -- 5.3 Model for Bond Strength of Corroded Strand -- 5.3.1 Ultimate Bond Strength of Corroded Strand -- 5.3.2 Corrosion-Induced Pressure at Bond Interface -- 5.3.3 Confining Stress at Bond Failure -- 5.3.4 Model Validation -- 5.4 Model for Bond-Slip Between Corroded Strand and Concrete -- 5.4.1 Method for the Local Bond Characteristics -- 5.4.2 Local Bond-Slip Between Corroded Strand and Concrete -- 5.5 Conclusions -- References -- 6 Prestress Loss and Transfer Length Prediction in Pretensioned Concrete Structures with Corrosive Cracking -- 6.1 Introduction -- 6.2 Calculation of Corrosion-Induced Expansive Pressure -- 6.2.1 Prediction Model of Prestress Loss Under Corrosive Cracking -- 6.2.2 Bond Degradation Due to Strand Corrosion.
6.2.3 Calculation Flow Chart of Prestress Loss -- 6.2.4 Evaluation of Effective Prestress -- 6.2.5 Effective Prestress Evaluation -- 6.2.6 Validation on Prestress Loss Model -- 6.2.7 Prediction of Transfer Length Under Corrosive Cracking -- 6.2.8 Calculation of Transfer Length -- 6.3 Evaluation of the Transfer Length in Corroded PC Beams -- 6.3.1 Specimen Design and Data Analysis -- 6.3.2 Evaluation of Transfer Length Under Corrosive Cracking -- 6.4 Model Validation and Parameter Sensitivity Analysis -- 6.4.1 Verification of Proposed Model -- 6.4.2 Effect of Material Parameters on Expansive Pressure -- 6.4.3 Effect of Material Parameters on Transfer Length -- 6.5 Conclusions -- References -- 7 Secondary Anchorage and Prestress Loss of Fractured Strand in PT Beams -- 7.1 Introduction -- 7.2 Literature Review -- 7.2.1 Bonding Properties of Fractured Strand -- 7.2.2 Prestress Loss of Fractured Strand -- 7.3 Secondary Anchorage of Fractured Strand -- 7.3.1 Strand Fracture Test -- 7.3.2 Mechanism of Secondary Anchorage -- 7.3.3 Secondary Transfer Length After Strand Fracture -- 7.3.4 Residual Prestress in Secondary Anchorage of Fractured Strand -- 7.4 Residual Prestress in PT Beams After Strand Fracture -- 7.4.1 Calculation of Residual Prestress -- 7.4.2 Relation Between Residual Prestress and Strand Fracture Position -- 7.5 Numerical Model for Secondary Anchorage of Fractured Strand -- 7.5.1 Numerical Model Generation -- 7.5.2 Interfacial Bond-Slip Simulation -- 7.5.3 Strand Fracture Simulation -- 7.5.4 Model Validation -- 7.6 Evaluation of Damage Control Section and Flexural Capacity After Strand Fracture -- 7.7 Conclusions -- References -- 8 Flexural Behaviors of Corroded Post-tensioned Concrete Beams -- 8.1 Introduction -- 8.2 Design of Specimens with Different Defects -- 8.3 Effect of Insufficient Grouting on Flexural Behaviors.
8.3.1 Design of Insufficient Grouting -- 8.3.2 Cracking Behavior -- 8.3.3 Load-Deflection Response -- 8.3.4 Ultimate Strength and Failure Mode -- 8.4 Effect of Strand Corrosion in Insufficient Grouting on Flexural Behaviors -- 8.4.1 Corrosion Characteristic of Strand -- 8.4.2 Cracking Behavior -- 8.4.3 Load-Deflection Response -- 8.4.4 Failure Mode and Ultimate Strength -- 8.5 Effect of Strand Corrosion in Full Grouting on Flexural Behaviors -- 8.5.1 Corrosion of Prestressed Concrete Beams -- 8.5.2 Cracking Patterns at the Ultimate State -- 8.5.3 Load-Deflection Response -- 8.5.4 Failure Mode and Ultimate Strength -- 8.6 Conclusions -- References -- 9 Bearing Capacity Prediction of Corroded PT Beams Incorporating Grouting Defects and Bond Degradation -- 9.1 Introduction -- 9.2 Analytical Model for Flexural Capacity of PT Beams -- 9.2.1 Simplified Calculation Method -- 9.2.2 Calculation Procedure -- 9.3 Model Validation -- 9.4 Quantification of Corrosion-Induced Uncoordinated Deformation in Bond-Slip Zone -- 9.4.1 Quantification Principle of Bond-Slip Zone -- 9.4.2 A Quantitative Method for Uncoordinated Deformation -- 9.5 Bearing Capacity Assessment Considering Bond Degradation -- 9.5.1 Bonding Degradation Model -- 9.5.2 Calculation of Bearing Capacity -- 9.5.3 Model Verification -- 9.5.4 Effect of Corrosion on Uncoordinated Deformation -- 9.6 Conclusions -- References.
author_facet Wang, Lei.
author_variant l w lw
author_sort Wang, Lei.
title Strand Corrosion in Prestressed Concrete Structures.
title_full Strand Corrosion in Prestressed Concrete Structures.
title_fullStr Strand Corrosion in Prestressed Concrete Structures.
title_full_unstemmed Strand Corrosion in Prestressed Concrete Structures.
title_auth Strand Corrosion in Prestressed Concrete Structures.
title_new Strand Corrosion in Prestressed Concrete Structures.
title_sort strand corrosion in prestressed concrete structures.
publisher Springer,
publishDate 2023
physical 1 online resource (261 pages)
edition 1st ed.
contents Intro -- Preface -- Acknowledgements -- Contents -- About the Author -- 1 Brief Description of Prestressed Concrete Structures -- 1.1 History and Development of PC Structures -- 1.1.1 Reinforced Concrete Structures -- 1.1.2 Prestressed Concrete Structures -- 1.1.3 Main Methods of Prestressing -- 1.1.4 Characteristics of PC Structures -- 1.2 Practical Application of PC Structures -- 1.2.1 Application of Prestressing Technology in Bridges -- 1.2.2 Examples of Prestressing in Bridges -- 1.3 Corrosion of Strand in Prestressed Concrete -- 1.3.1 Mechanisms of Electrochemical Corrosion -- 1.3.2 Mechanisms of Stress Corrosion -- 1.3.3 Influence Factors of Strand Corrosion -- 1.4 Contents of This Book -- References -- 2 Mechanical Behaviors of Corroded Prestressing Strands -- 2.1 Introduction -- 2.2 Corrosion Morphology and Microscopic Damage of Strands -- 2.2.1 Corrosion Morphology of Prestressing Strands -- 2.2.2 Microscopic Damage of Corroded Strands -- 2.3 Corrosion Pits of Prestressing Strands -- 2.4 Probability Distribution of Corrosion Pits -- 2.4.1 Frequency Distribution of Corrosion Pits -- 2.4.2 K-S Test of Pit Size Parameters -- 2.5 Mechanical Behavior of Corroded Prestressing Strands -- 2.5.1 Relation Between Load and Displacement -- 2.5.2 Ultimate Strength, Strain, and Elastic Modulus -- 2.6 Constitutive Model of Prestressing Corroded Strands -- 2.7 Conclusions -- References -- 3 Corrosion-Induced Cracking of Prestressed Concrete -- 3.1 Introduction -- 3.2 Experimental Study on Corrosion-Induced Cracking -- 3.2.1 Filling of Strand Corrosion Products -- 3.2.2 Concrete Cracking Under Combined Prestress and Strand Corrosion -- 3.3 Prediction of Corrosion-Induced Cracking in PC Beams -- 3.3.1 Model for Corrosion-Induced Cracking -- 3.3.2 Model Validation -- 3.4 Meso-scale Modeling of Strand Corrosion-Induced Concrete Cracking.
3.4.1 3D Corrosion Expansion Model of Helical Strand -- 3.4.2 Meso-scale Model of Heterogeneous Concrete -- 3.4.3 Model Validation -- 3.4.4 Influencing Parameters for Corrosion-Induced Cracking -- 3.5 Conclusions -- References -- 4 Bond Behavior Between Strand and Concrete with Corrosive Cracking -- 4.1 Introduction -- 4.2 Bond Behavior of Strand with Corrosive Cracking in Pull-Out Specimens -- 4.2.1 Corrosion-Induced Concrete Cracking -- 4.2.2 Concrete Strain -- 4.2.3 Twisting of Strands -- 4.2.4 Pull-Out Force and Slip -- 4.2.5 Distribution of Bond Stress -- 4.2.6 Bond Strength of Corroded Strand -- 4.3 Bond Behavior of Corroded Strand in PC Beams -- 4.3.1 Corrosion Loss and Corrosion-Induced Crack -- 4.3.2 Effect of Corrosion on Force-Slip Response of Strand -- 4.3.3 Failure Mode and Bond Strength -- 4.3.4 Degradation of Strand Bond and Tensile Strengths -- 4.4 Conclusions -- References -- 5 Bond-Slip Model of Corroded Strand Considering Rotation Effect -- 5.1 Introduction -- 5.2 Bond Strength of Strand Considering Rotation Effect -- 5.2.1 Theoretical Expressions for Bond Strength -- 5.2.2 Model Verification -- 5.3 Model for Bond Strength of Corroded Strand -- 5.3.1 Ultimate Bond Strength of Corroded Strand -- 5.3.2 Corrosion-Induced Pressure at Bond Interface -- 5.3.3 Confining Stress at Bond Failure -- 5.3.4 Model Validation -- 5.4 Model for Bond-Slip Between Corroded Strand and Concrete -- 5.4.1 Method for the Local Bond Characteristics -- 5.4.2 Local Bond-Slip Between Corroded Strand and Concrete -- 5.5 Conclusions -- References -- 6 Prestress Loss and Transfer Length Prediction in Pretensioned Concrete Structures with Corrosive Cracking -- 6.1 Introduction -- 6.2 Calculation of Corrosion-Induced Expansive Pressure -- 6.2.1 Prediction Model of Prestress Loss Under Corrosive Cracking -- 6.2.2 Bond Degradation Due to Strand Corrosion.
6.2.3 Calculation Flow Chart of Prestress Loss -- 6.2.4 Evaluation of Effective Prestress -- 6.2.5 Effective Prestress Evaluation -- 6.2.6 Validation on Prestress Loss Model -- 6.2.7 Prediction of Transfer Length Under Corrosive Cracking -- 6.2.8 Calculation of Transfer Length -- 6.3 Evaluation of the Transfer Length in Corroded PC Beams -- 6.3.1 Specimen Design and Data Analysis -- 6.3.2 Evaluation of Transfer Length Under Corrosive Cracking -- 6.4 Model Validation and Parameter Sensitivity Analysis -- 6.4.1 Verification of Proposed Model -- 6.4.2 Effect of Material Parameters on Expansive Pressure -- 6.4.3 Effect of Material Parameters on Transfer Length -- 6.5 Conclusions -- References -- 7 Secondary Anchorage and Prestress Loss of Fractured Strand in PT Beams -- 7.1 Introduction -- 7.2 Literature Review -- 7.2.1 Bonding Properties of Fractured Strand -- 7.2.2 Prestress Loss of Fractured Strand -- 7.3 Secondary Anchorage of Fractured Strand -- 7.3.1 Strand Fracture Test -- 7.3.2 Mechanism of Secondary Anchorage -- 7.3.3 Secondary Transfer Length After Strand Fracture -- 7.3.4 Residual Prestress in Secondary Anchorage of Fractured Strand -- 7.4 Residual Prestress in PT Beams After Strand Fracture -- 7.4.1 Calculation of Residual Prestress -- 7.4.2 Relation Between Residual Prestress and Strand Fracture Position -- 7.5 Numerical Model for Secondary Anchorage of Fractured Strand -- 7.5.1 Numerical Model Generation -- 7.5.2 Interfacial Bond-Slip Simulation -- 7.5.3 Strand Fracture Simulation -- 7.5.4 Model Validation -- 7.6 Evaluation of Damage Control Section and Flexural Capacity After Strand Fracture -- 7.7 Conclusions -- References -- 8 Flexural Behaviors of Corroded Post-tensioned Concrete Beams -- 8.1 Introduction -- 8.2 Design of Specimens with Different Defects -- 8.3 Effect of Insufficient Grouting on Flexural Behaviors.
8.3.1 Design of Insufficient Grouting -- 8.3.2 Cracking Behavior -- 8.3.3 Load-Deflection Response -- 8.3.4 Ultimate Strength and Failure Mode -- 8.4 Effect of Strand Corrosion in Insufficient Grouting on Flexural Behaviors -- 8.4.1 Corrosion Characteristic of Strand -- 8.4.2 Cracking Behavior -- 8.4.3 Load-Deflection Response -- 8.4.4 Failure Mode and Ultimate Strength -- 8.5 Effect of Strand Corrosion in Full Grouting on Flexural Behaviors -- 8.5.1 Corrosion of Prestressed Concrete Beams -- 8.5.2 Cracking Patterns at the Ultimate State -- 8.5.3 Load-Deflection Response -- 8.5.4 Failure Mode and Ultimate Strength -- 8.6 Conclusions -- References -- 9 Bearing Capacity Prediction of Corroded PT Beams Incorporating Grouting Defects and Bond Degradation -- 9.1 Introduction -- 9.2 Analytical Model for Flexural Capacity of PT Beams -- 9.2.1 Simplified Calculation Method -- 9.2.2 Calculation Procedure -- 9.3 Model Validation -- 9.4 Quantification of Corrosion-Induced Uncoordinated Deformation in Bond-Slip Zone -- 9.4.1 Quantification Principle of Bond-Slip Zone -- 9.4.2 A Quantitative Method for Uncoordinated Deformation -- 9.5 Bearing Capacity Assessment Considering Bond Degradation -- 9.5.1 Bonding Degradation Model -- 9.5.2 Calculation of Bearing Capacity -- 9.5.3 Model Verification -- 9.5.4 Effect of Corrosion on Uncoordinated Deformation -- 9.6 Conclusions -- References.
isbn 9789819920549
9789819920532
callnumber-first T - Technology
callnumber-subject TA - General and Civil Engineering
callnumber-label TA1-2040
callnumber-sort TA 11 42040
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30719851
illustrated Not Illustrated
oclc_num 1395909890
work_keys_str_mv AT wanglei strandcorrosioninprestressedconcretestructures
status_str n
ids_txt_mv (MiAaPQ)50030719851
(Au-PeEL)EBL30719851
(OCoLC)1395909890
carrierType_str_mv cr
is_hierarchy_title Strand Corrosion in Prestressed Concrete Structures.
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331072697008128
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09172nam a22004093i 4500</leader><controlfield tag="001">50030719851</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073851.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2023 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789819920549</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789819920532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)50030719851</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL30719851</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1395909890</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Lei.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strand Corrosion in Prestressed Concrete Structures.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">Springer,</subfield><subfield code="c">2023.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (261 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgements -- Contents -- About the Author -- 1 Brief Description of Prestressed Concrete Structures -- 1.1 History and Development of PC Structures -- 1.1.1 Reinforced Concrete Structures -- 1.1.2 Prestressed Concrete Structures -- 1.1.3 Main Methods of Prestressing -- 1.1.4 Characteristics of PC Structures -- 1.2 Practical Application of PC Structures -- 1.2.1 Application of Prestressing Technology in Bridges -- 1.2.2 Examples of Prestressing in Bridges -- 1.3 Corrosion of Strand in Prestressed Concrete -- 1.3.1 Mechanisms of Electrochemical Corrosion -- 1.3.2 Mechanisms of Stress Corrosion -- 1.3.3 Influence Factors of Strand Corrosion -- 1.4 Contents of This Book -- References -- 2 Mechanical Behaviors of Corroded Prestressing Strands -- 2.1 Introduction -- 2.2 Corrosion Morphology and Microscopic Damage of Strands -- 2.2.1 Corrosion Morphology of Prestressing Strands -- 2.2.2 Microscopic Damage of Corroded Strands -- 2.3 Corrosion Pits of Prestressing Strands -- 2.4 Probability Distribution of Corrosion Pits -- 2.4.1 Frequency Distribution of Corrosion Pits -- 2.4.2 K-S Test of Pit Size Parameters -- 2.5 Mechanical Behavior of Corroded Prestressing Strands -- 2.5.1 Relation Between Load and Displacement -- 2.5.2 Ultimate Strength, Strain, and Elastic Modulus -- 2.6 Constitutive Model of Prestressing Corroded Strands -- 2.7 Conclusions -- References -- 3 Corrosion-Induced Cracking of Prestressed Concrete -- 3.1 Introduction -- 3.2 Experimental Study on Corrosion-Induced Cracking -- 3.2.1 Filling of Strand Corrosion Products -- 3.2.2 Concrete Cracking Under Combined Prestress and Strand Corrosion -- 3.3 Prediction of Corrosion-Induced Cracking in PC Beams -- 3.3.1 Model for Corrosion-Induced Cracking -- 3.3.2 Model Validation -- 3.4 Meso-scale Modeling of Strand Corrosion-Induced Concrete Cracking.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.1 3D Corrosion Expansion Model of Helical Strand -- 3.4.2 Meso-scale Model of Heterogeneous Concrete -- 3.4.3 Model Validation -- 3.4.4 Influencing Parameters for Corrosion-Induced Cracking -- 3.5 Conclusions -- References -- 4 Bond Behavior Between Strand and Concrete with Corrosive Cracking -- 4.1 Introduction -- 4.2 Bond Behavior of Strand with Corrosive Cracking in Pull-Out Specimens -- 4.2.1 Corrosion-Induced Concrete Cracking -- 4.2.2 Concrete Strain -- 4.2.3 Twisting of Strands -- 4.2.4 Pull-Out Force and Slip -- 4.2.5 Distribution of Bond Stress -- 4.2.6 Bond Strength of Corroded Strand -- 4.3 Bond Behavior of Corroded Strand in PC Beams -- 4.3.1 Corrosion Loss and Corrosion-Induced Crack -- 4.3.2 Effect of Corrosion on Force-Slip Response of Strand -- 4.3.3 Failure Mode and Bond Strength -- 4.3.4 Degradation of Strand Bond and Tensile Strengths -- 4.4 Conclusions -- References -- 5 Bond-Slip Model of Corroded Strand Considering Rotation Effect -- 5.1 Introduction -- 5.2 Bond Strength of Strand Considering Rotation Effect -- 5.2.1 Theoretical Expressions for Bond Strength -- 5.2.2 Model Verification -- 5.3 Model for Bond Strength of Corroded Strand -- 5.3.1 Ultimate Bond Strength of Corroded Strand -- 5.3.2 Corrosion-Induced Pressure at Bond Interface -- 5.3.3 Confining Stress at Bond Failure -- 5.3.4 Model Validation -- 5.4 Model for Bond-Slip Between Corroded Strand and Concrete -- 5.4.1 Method for the Local Bond Characteristics -- 5.4.2 Local Bond-Slip Between Corroded Strand and Concrete -- 5.5 Conclusions -- References -- 6 Prestress Loss and Transfer Length Prediction in Pretensioned Concrete Structures with Corrosive Cracking -- 6.1 Introduction -- 6.2 Calculation of Corrosion-Induced Expansive Pressure -- 6.2.1 Prediction Model of Prestress Loss Under Corrosive Cracking -- 6.2.2 Bond Degradation Due to Strand Corrosion.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2.3 Calculation Flow Chart of Prestress Loss -- 6.2.4 Evaluation of Effective Prestress -- 6.2.5 Effective Prestress Evaluation -- 6.2.6 Validation on Prestress Loss Model -- 6.2.7 Prediction of Transfer Length Under Corrosive Cracking -- 6.2.8 Calculation of Transfer Length -- 6.3 Evaluation of the Transfer Length in Corroded PC Beams -- 6.3.1 Specimen Design and Data Analysis -- 6.3.2 Evaluation of Transfer Length Under Corrosive Cracking -- 6.4 Model Validation and Parameter Sensitivity Analysis -- 6.4.1 Verification of Proposed Model -- 6.4.2 Effect of Material Parameters on Expansive Pressure -- 6.4.3 Effect of Material Parameters on Transfer Length -- 6.5 Conclusions -- References -- 7 Secondary Anchorage and Prestress Loss of Fractured Strand in PT Beams -- 7.1 Introduction -- 7.2 Literature Review -- 7.2.1 Bonding Properties of Fractured Strand -- 7.2.2 Prestress Loss of Fractured Strand -- 7.3 Secondary Anchorage of Fractured Strand -- 7.3.1 Strand Fracture Test -- 7.3.2 Mechanism of Secondary Anchorage -- 7.3.3 Secondary Transfer Length After Strand Fracture -- 7.3.4 Residual Prestress in Secondary Anchorage of Fractured Strand -- 7.4 Residual Prestress in PT Beams After Strand Fracture -- 7.4.1 Calculation of Residual Prestress -- 7.4.2 Relation Between Residual Prestress and Strand Fracture Position -- 7.5 Numerical Model for Secondary Anchorage of Fractured Strand -- 7.5.1 Numerical Model Generation -- 7.5.2 Interfacial Bond-Slip Simulation -- 7.5.3 Strand Fracture Simulation -- 7.5.4 Model Validation -- 7.6 Evaluation of Damage Control Section and Flexural Capacity After Strand Fracture -- 7.7 Conclusions -- References -- 8 Flexural Behaviors of Corroded Post-tensioned Concrete Beams -- 8.1 Introduction -- 8.2 Design of Specimens with Different Defects -- 8.3 Effect of Insufficient Grouting on Flexural Behaviors.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.3.1 Design of Insufficient Grouting -- 8.3.2 Cracking Behavior -- 8.3.3 Load-Deflection Response -- 8.3.4 Ultimate Strength and Failure Mode -- 8.4 Effect of Strand Corrosion in Insufficient Grouting on Flexural Behaviors -- 8.4.1 Corrosion Characteristic of Strand -- 8.4.2 Cracking Behavior -- 8.4.3 Load-Deflection Response -- 8.4.4 Failure Mode and Ultimate Strength -- 8.5 Effect of Strand Corrosion in Full Grouting on Flexural Behaviors -- 8.5.1 Corrosion of Prestressed Concrete Beams -- 8.5.2 Cracking Patterns at the Ultimate State -- 8.5.3 Load-Deflection Response -- 8.5.4 Failure Mode and Ultimate Strength -- 8.6 Conclusions -- References -- 9 Bearing Capacity Prediction of Corroded PT Beams Incorporating Grouting Defects and Bond Degradation -- 9.1 Introduction -- 9.2 Analytical Model for Flexural Capacity of PT Beams -- 9.2.1 Simplified Calculation Method -- 9.2.2 Calculation Procedure -- 9.3 Model Validation -- 9.4 Quantification of Corrosion-Induced Uncoordinated Deformation in Bond-Slip Zone -- 9.4.1 Quantification Principle of Bond-Slip Zone -- 9.4.2 A Quantitative Method for Uncoordinated Deformation -- 9.5 Bearing Capacity Assessment Considering Bond Degradation -- 9.5.1 Bonding Degradation Model -- 9.5.2 Calculation of Bearing Capacity -- 9.5.3 Model Verification -- 9.5.4 Effect of Corrosion on Uncoordinated Deformation -- 9.6 Conclusions -- References.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Wang, Lei</subfield><subfield code="t">Strand Corrosion in Prestressed Concrete Structures</subfield><subfield code="d">Singapore : Springer,c2023</subfield><subfield code="z">9789819920532</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30719851</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>