Tortuosity and Microstructure Effects in Porous Media : : Classical Theories, Empirical Data and Modern Methods.

Saved in:
Bibliographic Details
Superior document:Springer Series in Materials Science Series ; v.333
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Series:Springer Series in Materials Science Series
Online Access:
Physical Description:1 online resource (198 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 50030670597
ctrlnum (MiAaPQ)50030670597
(Au-PeEL)EBL30670597
(OCoLC)1393169607
collection bib_alma
record_format marc
spelling Holzer, Lorenz.
Tortuosity and Microstructure Effects in Porous Media : Classical Theories, Empirical Data and Modern Methods.
1st ed.
Cham : Springer International Publishing AG, 2023.
©2023.
1 online resource (198 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Springer Series in Materials Science Series ; v.333
Intro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- References -- 2 Review of Theories and a New Classification of Tortuosity Types -- 2.1 Introduction -- 2.1.1 Basic Concept of Tortuosity -- 2.1.2 Basic Challenges -- 2.1.3 Criteria for Classification -- 2.1.4 Content and Structure of This Chapter -- 2.2 Hydraulic Tortuosity -- 2.2.1 Classical Carman-Kozeny Theory -- 2.2.2 From Classical Carman-Kozeny Theory to Modern Characterization of Microstructure Effects -- 2.3 Electrical Tortuosity -- 2.3.1 Indirect Electrical Tortuosity -- 2.3.2 Mixed Electrical Tortuosities -- 2.4 Diffusional Tortuosity -- 2.4.1 Knudsen Number -- 2.4.2 Bulk Diffusion -- 2.4.3 Knudsen Diffusion -- 2.4.4 Limitations to the Concept of Diffusional Tortuosity -- 2.5 Direct Geometric Tortuosity -- 2.5.1 Skeleton and Medial Axis Tortuosity -- 2.5.2 Path Tracking Method (PTM) Tortuosity -- 2.5.3 Geodesic Tortuosity -- 2.5.4 Fast Marching Method (FMM) Tortuosity -- 2.5.5 Percolation Path Tortuosity -- 2.5.6 Pore Centroid Tortuosity -- 2.6 Tortuosity Types: Classification Scheme and Nomenclature -- 2.6.1 Classification Scheme -- 2.6.2 Nomenclature -- 2.7 Summary -- References -- 3 Tortuosity-Porosity Relationships: Review of Empirical Data from Literature -- 3.1 Introduction -- 3.2 Empirical Data for Different Materials and Microstructure Types -- 3.3 Empirical Data for Different Tortuosity Types -- 3.4 Direct Comparison of Tortuosity Types Based on Selected Data Sets -- 3.4.1 Example 1: Indirect Versus Direct Pore Centroid Tortuosity -- 3.4.2 Example 2: Indirect Versus Direct Medial Axis Tortuosity -- 3.4.3 Example 3: Indirect Versus Direct Geodesic Tortuosity -- 3.4.4 Example 4: Indirect Versus Medial Axis Versus Geodesic Tortuosity -- 3.4.5 Example 5: Direct Medial Axis Versus Direct Geodesic Tortuosity.
3.4.6 Example 6: Mixed Streamline Versus Mixed Volume Averaged Tortuosity -- 3.5 Relative Order of Tortuosity Types -- 3.5.1 Summary of Empirical Data: Global Pattern of Tortuosity Types -- 3.5.2 Interpretation of Different Tortuosity Categories -- 3.6 Tortuosity-Porosity Relationships in Literature -- 3.6.1 Mathematical Expressions for τ-ε Relationships and Their Limitations -- 3.6.2 Mathematical Expressions for τ-ε Relationships and Their Justification -- 3.7 Summary -- References -- 4 Image Based Methodologies, Workflows, and Calculation Approaches for Tortuosity -- 4.1 Introduction -- 4.2 Tomography and 3D Imaging -- 4.2.1 Overview and Introduction to 3D Imaging Methods -- 4.2.2 X-ray Computed Tomography -- 4.2.3 FIB-SEM Tomography and Serial Sectioning -- 4.2.4 Electron Tomography -- 4.2.5 Atom Probe Tomography -- 4.2.6 Correlative Tomography -- 4.3 Available Software Packages for 3D Image Processing and Computation of Tortuosity -- 4.3.1 Methodological Modules -- 4.3.2 Different Types of SW Packages -- 4.4 From Tomography Raw Data to Segmented 3D Microstructures: Step by Step Example of Qualitative Image Processing -- 4.5 Calculation Approaches for Tortuosity -- 4.5.1 Calculation Approaches and SW for Direct Geometric Tortuosities (τdir_geom) -- 4.5.2 Calculation Approaches and SW for Indirect Physics-Based Tortuosities (τindir_phys) -- 4.5.3 Calculation Approaches for Mixed Tortuosities -- 4.6 Pore Scale Modeling for Tortuosity Characterization: Examples from Literature -- 4.6.1 Examples of Pore Scale Modeling in Geoscience -- 4.6.2 Examples of Pore Scale Modeling for Energy and Electrochemistry Applications -- 4.7 Stochastic Microstructure Modeling -- 4.7.1 Stochastic Modeling for Digital Materials Design (DMD) of Electrochemical Devices -- 4.7.2 Stochastic Modeling for Digital Rock Physics and Virtual Materials Testing of Porous Media.
4.8 Summary -- References -- 5 Towards a Quantitative Understanding of Microstructure-Property Relationships -- 5.1 Introduction -- 5.2 Quantitative Micro-Macro Relationships for the Prediction of Conductivity and Diffusivity -- 5.3 Quantitative Micro-Macro Relationships for the Prediction of Permeability -- 5.3.1 Bundle of Tubes Model -- 5.3.2 Sphere Packing Model -- 5.3.3 Determination of Characteristic Length and M-factor by Laboratory Experiments -- 5.3.4 Determination of Characteristic Length and M-factor by 3D Image Analysis -- 5.3.5 Determination of Characteristic Length and M-factor by Virtual Materials Testing -- 5.4 Summary -- References -- 6 Summary and Conclusions.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Marmet, Philip.
Fingerle, Mathias.
Wiegmann, Andreas.
Neumann, Matthias.
Schmidt, Volker.
Print version: Holzer, Lorenz Tortuosity and Microstructure Effects in Porous Media Cham : Springer International Publishing AG,c2023 9783031304767
ProQuest (Firm)
Springer Series in Materials Science Series
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30670597 Click to View
language English
format eBook
author Holzer, Lorenz.
spellingShingle Holzer, Lorenz.
Tortuosity and Microstructure Effects in Porous Media : Classical Theories, Empirical Data and Modern Methods.
Springer Series in Materials Science Series ;
Intro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- References -- 2 Review of Theories and a New Classification of Tortuosity Types -- 2.1 Introduction -- 2.1.1 Basic Concept of Tortuosity -- 2.1.2 Basic Challenges -- 2.1.3 Criteria for Classification -- 2.1.4 Content and Structure of This Chapter -- 2.2 Hydraulic Tortuosity -- 2.2.1 Classical Carman-Kozeny Theory -- 2.2.2 From Classical Carman-Kozeny Theory to Modern Characterization of Microstructure Effects -- 2.3 Electrical Tortuosity -- 2.3.1 Indirect Electrical Tortuosity -- 2.3.2 Mixed Electrical Tortuosities -- 2.4 Diffusional Tortuosity -- 2.4.1 Knudsen Number -- 2.4.2 Bulk Diffusion -- 2.4.3 Knudsen Diffusion -- 2.4.4 Limitations to the Concept of Diffusional Tortuosity -- 2.5 Direct Geometric Tortuosity -- 2.5.1 Skeleton and Medial Axis Tortuosity -- 2.5.2 Path Tracking Method (PTM) Tortuosity -- 2.5.3 Geodesic Tortuosity -- 2.5.4 Fast Marching Method (FMM) Tortuosity -- 2.5.5 Percolation Path Tortuosity -- 2.5.6 Pore Centroid Tortuosity -- 2.6 Tortuosity Types: Classification Scheme and Nomenclature -- 2.6.1 Classification Scheme -- 2.6.2 Nomenclature -- 2.7 Summary -- References -- 3 Tortuosity-Porosity Relationships: Review of Empirical Data from Literature -- 3.1 Introduction -- 3.2 Empirical Data for Different Materials and Microstructure Types -- 3.3 Empirical Data for Different Tortuosity Types -- 3.4 Direct Comparison of Tortuosity Types Based on Selected Data Sets -- 3.4.1 Example 1: Indirect Versus Direct Pore Centroid Tortuosity -- 3.4.2 Example 2: Indirect Versus Direct Medial Axis Tortuosity -- 3.4.3 Example 3: Indirect Versus Direct Geodesic Tortuosity -- 3.4.4 Example 4: Indirect Versus Medial Axis Versus Geodesic Tortuosity -- 3.4.5 Example 5: Direct Medial Axis Versus Direct Geodesic Tortuosity.
3.4.6 Example 6: Mixed Streamline Versus Mixed Volume Averaged Tortuosity -- 3.5 Relative Order of Tortuosity Types -- 3.5.1 Summary of Empirical Data: Global Pattern of Tortuosity Types -- 3.5.2 Interpretation of Different Tortuosity Categories -- 3.6 Tortuosity-Porosity Relationships in Literature -- 3.6.1 Mathematical Expressions for τ-ε Relationships and Their Limitations -- 3.6.2 Mathematical Expressions for τ-ε Relationships and Their Justification -- 3.7 Summary -- References -- 4 Image Based Methodologies, Workflows, and Calculation Approaches for Tortuosity -- 4.1 Introduction -- 4.2 Tomography and 3D Imaging -- 4.2.1 Overview and Introduction to 3D Imaging Methods -- 4.2.2 X-ray Computed Tomography -- 4.2.3 FIB-SEM Tomography and Serial Sectioning -- 4.2.4 Electron Tomography -- 4.2.5 Atom Probe Tomography -- 4.2.6 Correlative Tomography -- 4.3 Available Software Packages for 3D Image Processing and Computation of Tortuosity -- 4.3.1 Methodological Modules -- 4.3.2 Different Types of SW Packages -- 4.4 From Tomography Raw Data to Segmented 3D Microstructures: Step by Step Example of Qualitative Image Processing -- 4.5 Calculation Approaches for Tortuosity -- 4.5.1 Calculation Approaches and SW for Direct Geometric Tortuosities (τdir_geom) -- 4.5.2 Calculation Approaches and SW for Indirect Physics-Based Tortuosities (τindir_phys) -- 4.5.3 Calculation Approaches for Mixed Tortuosities -- 4.6 Pore Scale Modeling for Tortuosity Characterization: Examples from Literature -- 4.6.1 Examples of Pore Scale Modeling in Geoscience -- 4.6.2 Examples of Pore Scale Modeling for Energy and Electrochemistry Applications -- 4.7 Stochastic Microstructure Modeling -- 4.7.1 Stochastic Modeling for Digital Materials Design (DMD) of Electrochemical Devices -- 4.7.2 Stochastic Modeling for Digital Rock Physics and Virtual Materials Testing of Porous Media.
4.8 Summary -- References -- 5 Towards a Quantitative Understanding of Microstructure-Property Relationships -- 5.1 Introduction -- 5.2 Quantitative Micro-Macro Relationships for the Prediction of Conductivity and Diffusivity -- 5.3 Quantitative Micro-Macro Relationships for the Prediction of Permeability -- 5.3.1 Bundle of Tubes Model -- 5.3.2 Sphere Packing Model -- 5.3.3 Determination of Characteristic Length and M-factor by Laboratory Experiments -- 5.3.4 Determination of Characteristic Length and M-factor by 3D Image Analysis -- 5.3.5 Determination of Characteristic Length and M-factor by Virtual Materials Testing -- 5.4 Summary -- References -- 6 Summary and Conclusions.
author_facet Holzer, Lorenz.
Marmet, Philip.
Fingerle, Mathias.
Wiegmann, Andreas.
Neumann, Matthias.
Schmidt, Volker.
author_variant l h lh
author2 Marmet, Philip.
Fingerle, Mathias.
Wiegmann, Andreas.
Neumann, Matthias.
Schmidt, Volker.
author2_variant p m pm
m f mf
a w aw
m n mn
v s vs
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Holzer, Lorenz.
title Tortuosity and Microstructure Effects in Porous Media : Classical Theories, Empirical Data and Modern Methods.
title_sub Classical Theories, Empirical Data and Modern Methods.
title_full Tortuosity and Microstructure Effects in Porous Media : Classical Theories, Empirical Data and Modern Methods.
title_fullStr Tortuosity and Microstructure Effects in Porous Media : Classical Theories, Empirical Data and Modern Methods.
title_full_unstemmed Tortuosity and Microstructure Effects in Porous Media : Classical Theories, Empirical Data and Modern Methods.
title_auth Tortuosity and Microstructure Effects in Porous Media : Classical Theories, Empirical Data and Modern Methods.
title_new Tortuosity and Microstructure Effects in Porous Media :
title_sort tortuosity and microstructure effects in porous media : classical theories, empirical data and modern methods.
series Springer Series in Materials Science Series ;
series2 Springer Series in Materials Science Series ;
publisher Springer International Publishing AG,
publishDate 2023
physical 1 online resource (198 pages)
edition 1st ed.
contents Intro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- References -- 2 Review of Theories and a New Classification of Tortuosity Types -- 2.1 Introduction -- 2.1.1 Basic Concept of Tortuosity -- 2.1.2 Basic Challenges -- 2.1.3 Criteria for Classification -- 2.1.4 Content and Structure of This Chapter -- 2.2 Hydraulic Tortuosity -- 2.2.1 Classical Carman-Kozeny Theory -- 2.2.2 From Classical Carman-Kozeny Theory to Modern Characterization of Microstructure Effects -- 2.3 Electrical Tortuosity -- 2.3.1 Indirect Electrical Tortuosity -- 2.3.2 Mixed Electrical Tortuosities -- 2.4 Diffusional Tortuosity -- 2.4.1 Knudsen Number -- 2.4.2 Bulk Diffusion -- 2.4.3 Knudsen Diffusion -- 2.4.4 Limitations to the Concept of Diffusional Tortuosity -- 2.5 Direct Geometric Tortuosity -- 2.5.1 Skeleton and Medial Axis Tortuosity -- 2.5.2 Path Tracking Method (PTM) Tortuosity -- 2.5.3 Geodesic Tortuosity -- 2.5.4 Fast Marching Method (FMM) Tortuosity -- 2.5.5 Percolation Path Tortuosity -- 2.5.6 Pore Centroid Tortuosity -- 2.6 Tortuosity Types: Classification Scheme and Nomenclature -- 2.6.1 Classification Scheme -- 2.6.2 Nomenclature -- 2.7 Summary -- References -- 3 Tortuosity-Porosity Relationships: Review of Empirical Data from Literature -- 3.1 Introduction -- 3.2 Empirical Data for Different Materials and Microstructure Types -- 3.3 Empirical Data for Different Tortuosity Types -- 3.4 Direct Comparison of Tortuosity Types Based on Selected Data Sets -- 3.4.1 Example 1: Indirect Versus Direct Pore Centroid Tortuosity -- 3.4.2 Example 2: Indirect Versus Direct Medial Axis Tortuosity -- 3.4.3 Example 3: Indirect Versus Direct Geodesic Tortuosity -- 3.4.4 Example 4: Indirect Versus Medial Axis Versus Geodesic Tortuosity -- 3.4.5 Example 5: Direct Medial Axis Versus Direct Geodesic Tortuosity.
3.4.6 Example 6: Mixed Streamline Versus Mixed Volume Averaged Tortuosity -- 3.5 Relative Order of Tortuosity Types -- 3.5.1 Summary of Empirical Data: Global Pattern of Tortuosity Types -- 3.5.2 Interpretation of Different Tortuosity Categories -- 3.6 Tortuosity-Porosity Relationships in Literature -- 3.6.1 Mathematical Expressions for τ-ε Relationships and Their Limitations -- 3.6.2 Mathematical Expressions for τ-ε Relationships and Their Justification -- 3.7 Summary -- References -- 4 Image Based Methodologies, Workflows, and Calculation Approaches for Tortuosity -- 4.1 Introduction -- 4.2 Tomography and 3D Imaging -- 4.2.1 Overview and Introduction to 3D Imaging Methods -- 4.2.2 X-ray Computed Tomography -- 4.2.3 FIB-SEM Tomography and Serial Sectioning -- 4.2.4 Electron Tomography -- 4.2.5 Atom Probe Tomography -- 4.2.6 Correlative Tomography -- 4.3 Available Software Packages for 3D Image Processing and Computation of Tortuosity -- 4.3.1 Methodological Modules -- 4.3.2 Different Types of SW Packages -- 4.4 From Tomography Raw Data to Segmented 3D Microstructures: Step by Step Example of Qualitative Image Processing -- 4.5 Calculation Approaches for Tortuosity -- 4.5.1 Calculation Approaches and SW for Direct Geometric Tortuosities (τdir_geom) -- 4.5.2 Calculation Approaches and SW for Indirect Physics-Based Tortuosities (τindir_phys) -- 4.5.3 Calculation Approaches for Mixed Tortuosities -- 4.6 Pore Scale Modeling for Tortuosity Characterization: Examples from Literature -- 4.6.1 Examples of Pore Scale Modeling in Geoscience -- 4.6.2 Examples of Pore Scale Modeling for Energy and Electrochemistry Applications -- 4.7 Stochastic Microstructure Modeling -- 4.7.1 Stochastic Modeling for Digital Materials Design (DMD) of Electrochemical Devices -- 4.7.2 Stochastic Modeling for Digital Rock Physics and Virtual Materials Testing of Porous Media.
4.8 Summary -- References -- 5 Towards a Quantitative Understanding of Microstructure-Property Relationships -- 5.1 Introduction -- 5.2 Quantitative Micro-Macro Relationships for the Prediction of Conductivity and Diffusivity -- 5.3 Quantitative Micro-Macro Relationships for the Prediction of Permeability -- 5.3.1 Bundle of Tubes Model -- 5.3.2 Sphere Packing Model -- 5.3.3 Determination of Characteristic Length and M-factor by Laboratory Experiments -- 5.3.4 Determination of Characteristic Length and M-factor by 3D Image Analysis -- 5.3.5 Determination of Characteristic Length and M-factor by Virtual Materials Testing -- 5.4 Summary -- References -- 6 Summary and Conclusions.
isbn 9783031304774
9783031304767
callnumber-first T - Technology
callnumber-subject TA - General and Civil Engineering
callnumber-label TA418
callnumber-sort TA 3418.9 P6
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30670597
illustrated Not Illustrated
oclc_num 1393169607
work_keys_str_mv AT holzerlorenz tortuosityandmicrostructureeffectsinporousmediaclassicaltheoriesempiricaldataandmodernmethods
AT marmetphilip tortuosityandmicrostructureeffectsinporousmediaclassicaltheoriesempiricaldataandmodernmethods
AT fingerlemathias tortuosityandmicrostructureeffectsinporousmediaclassicaltheoriesempiricaldataandmodernmethods
AT wiegmannandreas tortuosityandmicrostructureeffectsinporousmediaclassicaltheoriesempiricaldataandmodernmethods
AT neumannmatthias tortuosityandmicrostructureeffectsinporousmediaclassicaltheoriesempiricaldataandmodernmethods
AT schmidtvolker tortuosityandmicrostructureeffectsinporousmediaclassicaltheoriesempiricaldataandmodernmethods
status_str n
ids_txt_mv (MiAaPQ)50030670597
(Au-PeEL)EBL30670597
(OCoLC)1393169607
carrierType_str_mv cr
hierarchy_parent_title Springer Series in Materials Science Series ; v.333
is_hierarchy_title Tortuosity and Microstructure Effects in Porous Media : Classical Theories, Empirical Data and Modern Methods.
container_title Springer Series in Materials Science Series ; v.333
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
_version_ 1792331071491145728
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06715nam a22004813i 4500</leader><controlfield tag="001">50030670597</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073851.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2023 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031304774</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783031304767</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)50030670597</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL30670597</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1393169607</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA418.9.P6</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Holzer, Lorenz.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tortuosity and Microstructure Effects in Porous Media :</subfield><subfield code="b">Classical Theories, Empirical Data and Modern Methods.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2023.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (198 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer Series in Materials Science Series ;</subfield><subfield code="v">v.333</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- References -- 2 Review of Theories and a New Classification of Tortuosity Types -- 2.1 Introduction -- 2.1.1 Basic Concept of Tortuosity -- 2.1.2 Basic Challenges -- 2.1.3 Criteria for Classification -- 2.1.4 Content and Structure of This Chapter -- 2.2 Hydraulic Tortuosity -- 2.2.1 Classical Carman-Kozeny Theory -- 2.2.2 From Classical Carman-Kozeny Theory to Modern Characterization of Microstructure Effects -- 2.3 Electrical Tortuosity -- 2.3.1 Indirect Electrical Tortuosity -- 2.3.2 Mixed Electrical Tortuosities -- 2.4 Diffusional Tortuosity -- 2.4.1 Knudsen Number -- 2.4.2 Bulk Diffusion -- 2.4.3 Knudsen Diffusion -- 2.4.4 Limitations to the Concept of Diffusional Tortuosity -- 2.5 Direct Geometric Tortuosity -- 2.5.1 Skeleton and Medial Axis Tortuosity -- 2.5.2 Path Tracking Method (PTM) Tortuosity -- 2.5.3 Geodesic Tortuosity -- 2.5.4 Fast Marching Method (FMM) Tortuosity -- 2.5.5 Percolation Path Tortuosity -- 2.5.6 Pore Centroid Tortuosity -- 2.6 Tortuosity Types: Classification Scheme and Nomenclature -- 2.6.1 Classification Scheme -- 2.6.2 Nomenclature -- 2.7 Summary -- References -- 3 Tortuosity-Porosity Relationships: Review of Empirical Data from Literature -- 3.1 Introduction -- 3.2 Empirical Data for Different Materials and Microstructure Types -- 3.3 Empirical Data for Different Tortuosity Types -- 3.4 Direct Comparison of Tortuosity Types Based on Selected Data Sets -- 3.4.1 Example 1: Indirect Versus Direct Pore Centroid Tortuosity -- 3.4.2 Example 2: Indirect Versus Direct Medial Axis Tortuosity -- 3.4.3 Example 3: Indirect Versus Direct Geodesic Tortuosity -- 3.4.4 Example 4: Indirect Versus Medial Axis Versus Geodesic Tortuosity -- 3.4.5 Example 5: Direct Medial Axis Versus Direct Geodesic Tortuosity.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.6 Example 6: Mixed Streamline Versus Mixed Volume Averaged Tortuosity -- 3.5 Relative Order of Tortuosity Types -- 3.5.1 Summary of Empirical Data: Global Pattern of Tortuosity Types -- 3.5.2 Interpretation of Different Tortuosity Categories -- 3.6 Tortuosity-Porosity Relationships in Literature -- 3.6.1 Mathematical Expressions for τ-ε Relationships and Their Limitations -- 3.6.2 Mathematical Expressions for τ-ε Relationships and Their Justification -- 3.7 Summary -- References -- 4 Image Based Methodologies, Workflows, and Calculation Approaches for Tortuosity -- 4.1 Introduction -- 4.2 Tomography and 3D Imaging -- 4.2.1 Overview and Introduction to 3D Imaging Methods -- 4.2.2 X-ray Computed Tomography -- 4.2.3 FIB-SEM Tomography and Serial Sectioning -- 4.2.4 Electron Tomography -- 4.2.5 Atom Probe Tomography -- 4.2.6 Correlative Tomography -- 4.3 Available Software Packages for 3D Image Processing and Computation of Tortuosity -- 4.3.1 Methodological Modules -- 4.3.2 Different Types of SW Packages -- 4.4 From Tomography Raw Data to Segmented 3D Microstructures: Step by Step Example of Qualitative Image Processing -- 4.5 Calculation Approaches for Tortuosity -- 4.5.1 Calculation Approaches and SW for Direct Geometric Tortuosities (τdir_geom) -- 4.5.2 Calculation Approaches and SW for Indirect Physics-Based Tortuosities (τindir_phys) -- 4.5.3 Calculation Approaches for Mixed Tortuosities -- 4.6 Pore Scale Modeling for Tortuosity Characterization: Examples from Literature -- 4.6.1 Examples of Pore Scale Modeling in Geoscience -- 4.6.2 Examples of Pore Scale Modeling for Energy and Electrochemistry Applications -- 4.7 Stochastic Microstructure Modeling -- 4.7.1 Stochastic Modeling for Digital Materials Design (DMD) of Electrochemical Devices -- 4.7.2 Stochastic Modeling for Digital Rock Physics and Virtual Materials Testing of Porous Media.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.8 Summary -- References -- 5 Towards a Quantitative Understanding of Microstructure-Property Relationships -- 5.1 Introduction -- 5.2 Quantitative Micro-Macro Relationships for the Prediction of Conductivity and Diffusivity -- 5.3 Quantitative Micro-Macro Relationships for the Prediction of Permeability -- 5.3.1 Bundle of Tubes Model -- 5.3.2 Sphere Packing Model -- 5.3.3 Determination of Characteristic Length and M-factor by Laboratory Experiments -- 5.3.4 Determination of Characteristic Length and M-factor by 3D Image Analysis -- 5.3.5 Determination of Characteristic Length and M-factor by Virtual Materials Testing -- 5.4 Summary -- References -- 6 Summary and Conclusions.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marmet, Philip.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fingerle, Mathias.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiegmann, Andreas.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neumann, Matthias.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmidt, Volker.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Holzer, Lorenz</subfield><subfield code="t">Tortuosity and Microstructure Effects in Porous Media</subfield><subfield code="d">Cham : Springer International Publishing AG,c2023</subfield><subfield code="z">9783031304767</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer Series in Materials Science Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30670597</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>