Geodesy for a Sustainable Earth : : Proceedings of the 2021 Scientific Assembly of the International Association of Geodesy, Beijing, China, June 28 - July 2 2021.

Saved in:
Bibliographic Details
Superior document:International Association of Geodesy Symposia Series ; v.154
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Series:International Association of Geodesy Symposia Series
Online Access:
Physical Description:1 online resource (418 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Part I Geometric Reference Frames
  • Combined IVS Contribution to the ITRF2020
  • 1 Introduction
  • 2 Contributions by Individual IVS Analysis Centers
  • 3 IVS Combination Procedure
  • 4 IVS Combination Results
  • 5 Conclusions and Outlook
  • Conflict of Interest
  • References
  • An Experimental Combination of IGS repro3 Campaign's Orbit Products Using a Variance Component Estimation Strategy
  • 1 Introduction
  • 2 Material and Methods
  • 3 Results
  • 4 SLR External Validation
  • 5 Discussion and Perspectives
  • Data Availability
  • References
  • The Correlations of the Helmert Transformation Parameters as an Additional Auxiliary Diagnostic Tool for Terrestrial Reference Frames Quality Assessment
  • 1 Introduction
  • 2 Mathematical Model
  • 3 Results
  • 3.1 DTRF2014
  • 3.1.1 The SLR-only TRF
  • 3.1.2 The VLBI-only TRF
  • 3.2 IDS and ITRF2014 Comparison
  • 4 Conclusions
  • References
  • Shimosato Co-Location of the SLR and GNSS Stations
  • 1 Introduction
  • 1.1 International Terrestrial Reference Frame and Co-Location
  • 1.2 The Shimosato Hydrographic Observatory
  • 2 Survey Instrumentation and Methodology
  • 2.1 Local Survey of the Network
  • 2.2 Indirect Observation of the SLR Telescope IVP
  • 3 Data Analysis
  • 3.1 GNSS Data Processing
  • 3.2 Calculation of the Vertical Deflection
  • 3.3 Data Analysis for the Local Survey
  • 4 Results and Discussions
  • 4.1 Comparison with the SLR-GNSS Baseline
  • 4.2 Possible Error Sources
  • 5 Conclusion
  • Conflict of Interest
  • References
  • Local Ties at SLR Station Riga
  • 1 Introduction
  • 2 Local Tie Determination
  • 3 Comparison Between 1995 and 2021 Solutions
  • 4 Monitoring, Testing and Training Surveys in 2004, 2012, 2019 and 2020
  • 5 Conclusions
  • References
  • Datum Problem Handling in Local Tie Surveys at Wettzell and Metsahovi
  • 1 Introduction
  • 2 Wettzell.
  • 2.1 Local Network
  • 2.2 Transformation-Free Approach
  • 2.3 Deflection of the Vertical
  • 3 Metsähovi
  • 3.1 Local Network
  • 3.2 Scale
  • 3.3 Translation and Orientation, Seamless Network
  • 3.3.1 Using Geoid Model for Vertical Orientation
  • 3.3.2 Estimating the 3D Orientation of Instrument
  • 3.3.3 Results of Adjustments
  • 4 Discussion
  • References
  • Close Range Photogrammetry for High-Precision Reference PointDetermination
  • 1 Introduction
  • 2 Data Analysis
  • 2.1 Bundle Adjustment
  • 2.2 Reference Point Determination
  • 3 Satellite Observing System Wettzell
  • 4 Analysis and Results
  • 5 Combination Approaches
  • 6 Conclusion
  • Funding
  • Availability of Data and Material
  • Conflict of Interest
  • References
  • Frame Accuracy of Combined EPN Weekly Coordinate Solutions
  • 1 Introduction
  • 2 Theoretical Setting
  • 3 Routinely Combined EPN Weekly Coordinate Solutions
  • 3.1 General Information
  • 3.2 Combination Process
  • 3.3 Accuracy Assessment of EPN Weekly Frames
  • 3.4 Changes that Affected the Accuracy of EPN Weekly Frames
  • 3.5 Correlations in EPN Weekly Frame Parameters
  • 4 Re-Processed Combined EPN Weekly Coordinate Solutions
  • 5 Summary
  • References
  • The Atlantic Network of Geodynamic and Space Stations (RAEGE)
  • 1 Introduction: RAEGE Overview
  • 2 RAEGE Yebes Station
  • 3 RAEGE Santa María Station
  • 4 RAEGE Flores Station
  • 5 RAEGE Gran Canaria Station
  • 6 Conclusions and Future Work
  • References
  • ITRF Densification in Cyprus
  • 1 Introduction
  • 2 GNSS Data Processing
  • 2.1 Network Configuration
  • 2.2 Assessment of Daily GNSS Data
  • 2.3 Assessment of Baseline Processing
  • 2.4 Daily Network Solutions
  • 3 Multi-Year Adjustment and Estimation of Station Velocities
  • 4 Summary
  • References
  • Geodetic Analyses at the National Geographic Institute of Spain
  • 1 Introduction
  • 2 GNSS.
  • 2.1 The Spanish National GNSS Permanent Network and Real Time Positioning Service
  • 2.2 EUREF Permanent GNSS Network Analysis Centre
  • 2.3 IBERRED
  • 2.4 GNSS Tropospheric Products for Meteorology
  • 2.5 Other Analysis and Research Activities
  • 3 VLBI
  • 3.1 Contribution to the IVS
  • 3.2 Research Activities
  • 4 SLR
  • 4.1 SLR Reprocessing for ITRF
  • 4.2 Target Signature Modelling
  • 5 Conclusions
  • References
  • Large-Scale Dimensional Metrology for Geodesy-First Results from the European GeoMetre Project
  • 1 Introduction
  • 2 Instrumentation Development
  • 3 Reference Baselines
  • 4 Local Tie Metrology
  • 5 Conclusions
  • Conflict of Interest
  • References
  • GGOS Bureau of Products and Standards: Description and Promotion of Geodetic Products
  • 1 Introduction
  • 2 Objectives and Tasks of the BPS
  • 2.1 Committee ``Contributions to Earth System Modeling''
  • 2.2 Committee ``Definition of Essential Geodetic Variables''
  • 2.3 Working Group ``Towards a Consistent Set of Parameters for the Definition of a New GRS''
  • 3 Description and Representation of Geodetic Products at the GGOS Website
  • 4 Conclusions
  • References
  • Part II Physical Height Systems
  • Can an Earth Gravitational Model Augmented by a Topographic Gravity Field Model Realize the International Height Reference System Accurately?
  • 1 Introduction
  • 2 Methods for Computing Wp
  • 3 Geoid Models Computed from EGMes and Regional Geoid Models
  • 4 Geopotential Values at the IHRF Sites in Canada
  • 5 Conclusions and Outlook
  • References
  • Assessing Molodensky's Heights: A Rebuttal
  • 1 Introduction
  • 2 Auxiliary Arguments
  • 3 Main Arguments
  • 4 Conclusions
  • References
  • On the Accuracy of Geoid Heights Derived from Discrete GNSS/Levelling Data Using Kriging Interpolation
  • 1 Introduction
  • 2 Data and Methods
  • 3 Results and Discussion
  • 4 Conclusion
  • References.
  • Gravimetric Geoid Modeling by Stokes and Second Helmert's Condensation Method in Yogyakarta, Indonesia
  • 1 Introduction
  • 2 Data and Method
  • 2.1 Data Used
  • 2.2 RCR Under Stokes-Helmert Scheme
  • 3 Results and Discussions
  • 4 Final Remarks
  • Conflict of Interest
  • References
  • A Geodetic Determination of the Gravitational Potential Difference Toward a 100-km-Scale Clock Frequency Comparison in a Plate Subduction Zone
  • 1 Introduction
  • 2 Methods and Data
  • 2.1 The Study Area and the Height Reference System
  • 2.2 Repeated Leveling Surveys
  • 2.3 Leveling Survey Near the Clock Sites
  • 2.4 Tidal Effects on the Leveling
  • 3 Results
  • 3.1 Leveling
  • 3.2 Tidal Effects
  • 4 Discussion
  • 4.1 Treatment of Tides for Comparison with Chronometric Leveling
  • 4.2 Other Effects
  • 4.2.1 Long Wavelength Changes
  • 4.2.2 Nontidal Loading
  • 4.2.3 Groundwater
  • 4.2.4 Atmospheric Loading
  • 4.3 The GNSS-Geoid Method
  • 5 Summary
  • References
  • Validation of the Hellenic Gravity Network in the Frame of the ModernGravNet Project
  • 1 Introduction
  • 2 Measurements and Comparisons
  • 3 Parametric Modeling
  • 4 Discussion
  • References
  • Part III Global Gravity Field Modeling
  • Combined Gravity Solution from SLR and GRACE/GRACE-FO
  • 1 Introduction
  • 2 GRACE and GRACE-FO Gravity Recovery
  • 3 SLR Gravity Recovery
  • 4 Combined Gravity Solution
  • 5 Test Case and Combination Strategies
  • 6 Results and Discussion
  • 7 Conclusions
  • References
  • Contribution of LARES SLR Data to Co-estimated Earth GeopotentialCoefficients
  • 1 Introduction
  • 2 SLR Processing at AIUB
  • 2.1 Orbit Modeling
  • 2.2 Combination
  • 3 Validation of the SLR Solutions
  • 4 Conclusions
  • References
  • Determination and Combination of Monthly Gravity Field Time Series from Kinematic Orbits of GRACE, GRACE-FO and Swarm
  • 1 Introduction
  • 2 Gravity Field Recovery.
  • 3 Characteristics of Gravity Field Time Series
  • 4 Combination of Gravity Field Time Series
  • 4.1 VCE Combination
  • 4.2 Stochastic Combination
  • 5 Evaluation of Mass Trends and Variations
  • 6 Conclusions and Outlook
  • References
  • Topographic Gravity Field Modelling for Improving High-Resolution Global Gravity Field Models
  • 1 Introduction
  • 2 Methodology
  • 3 Analysis
  • 4 Evaluation of the Enhanced Model w.r.t. Ground Data
  • 5 Conclusion and Future Work
  • References
  • The Benefit of Accelerometers Based on Cold Atom Interferometry for Future Satellite Gravity Missions
  • 1 Introduction
  • 2 Performance of an Atom Interferometry Accelerometer
  • 3 Variation of Non-Gravitational Accelerations Within One Interferometer Cycle
  • 4 Closed-Loop Simulation
  • 4.1 Simulation Procedure
  • 4.2 Simulation Results
  • 5 Conclusions
  • Conflict of Interest
  • References
  • Kalman-Filter Based Hybridization of Classic and Cold Atom Interferometry Accelerometers for Future Satellite Gravity Missions
  • 1 Introduction
  • 2 Orbit and Accelerometer Modelling
  • 2.1 Cold Atom Interferometer Accelerometry
  • 2.2 In-Orbit Simulation of Electrostatic and CAI Accelerometers
  • 3 Extended Kalman Filter
  • 3.1 Dynamic System and Phase Prediction
  • 3.2 CAI Observation Equation
  • 4 Results and Discussion
  • 4.1 Solving for the Phase Ambiguity
  • 4.2 Hybridization of CAI-ACC with the GRACE-FO E-ACC
  • 4.3 Hybridization of CAI-ACC with an Improved E-ACC
  • 4.4 Discussion on the Impact of Rotational Accelerations and Gravity Gradient on the Measurements
  • 5 Conclusions
  • References
  • Gravimetry by Nanoscale Parametric Amplifiers Driven by Radiation-Induced Dispersion Force Modulation
  • 1 Introduction
  • 2 Casimir Force Manipulation
  • 3 Nanomechanical Oscillators
  • 3.1 Free and Dampened Harmonic Oscillators
  • 3.2 Electrostatically Driven Oscillators.
  • 3.3 Oscillators with Static Casimir Force Perturbation.