Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (305 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 50030625775
ctrlnum (MiAaPQ)50030625775
(Au-PeEL)EBL30625775
(OCoLC)1390758028
collection bib_alma
record_format marc
spelling Aurich, Jan C.
Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes.
1st ed.
Cham : Springer International Publishing AG, 2023.
©2023.
1 online resource (305 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Preface -- Acknowledgement -- Contents -- List of Contributors -- Discrete Filter and Non-Gaussian Noise for Fast Roughness Simulations with Gaussian Processes -- 1 Introduction -- 2 Background -- 2.1 Roughness Model with Gaussian Processes -- 2.2 Simulation of Rough Surfaces -- 2.3 Related Work -- 3 Gaussian Process Filter -- 3.1 Discrete Filter -- 3.2 Discrete Filter with FFT -- 4 Experiments -- 4.1 Timings of the Discrete Filter with SciPy and CuFFT -- 4.2 Benchmarking Discrete Filter -- 5 Applications -- 6 Conclusion -- References -- Phase Field Simulations for Fatigue Failure Prediction in Manufacturing Processes -- 1 Introduction -- 2 A Phase Field Model for Cyclic Fatigue -- 2.1 A Time-Cycle Transformation in the Phase Field Fatigue Model -- 3 Phase Field Model in the Context of Manufacturing Process -- 3.1 Application in the Cold Forging Process -- 3.2 Modeling Cold Forging Process Using Phase Field Method -- 3.3 Phase Field Fatigue Model in Cylindrical Coordinate System -- 3.4 Phase Field Simulation of Cold Forging Process -- 4 Conclusion -- References -- Embedding-Space Explanations of Learned Mixture Behavior -- 1 Introduction -- 2 Rangesets -- 2.1 Motivation -- 2.2 Rangeset Construction -- 2.3 Application to Process-Level -- 3 Decision Boundary Visualization -- 3.1 CoFFi -- 3.2 Chemical Classes in Latent Feature Space -- 3.3 Latent Features in Physicochemical Descriptor Space -- 4 Conclusion and Future Work -- References -- Insight into Indentation Processes of Ni-Graphene Nanocomposites by Molecular Dynamics Simulation -- 1 Introduction -- 2 Method -- 3 Ni Single Crystal -- 4 Ni Bi-crystal -- 5 Ni Polycrystal -- 6 Summary -- References -- Physical Modeling of Grinding Forces -- 1 Introduction -- 2 Experimental Investigation -- 2.1 Requirements for Performing Experiments -- 2.2 Preparations for the Scratch Tests.
2.3 Performing Scratch Tests in Dry Conditions -- 2.4 Performing Scratch Tests in Wet Conditions -- 3 Development of the Grinding Model -- 3.1 Selection of the Suitable Material Model -- 3.2 Discretization Approaches -- 3.3 Simulative Integration of the Cooling Lubricants -- 4 Conclusion -- References -- Modeling and Implementation of a 5G-Enabled Digital Twin of a Machine Tool Based on Physics Simulation -- 1 Motivation -- 2 State of the Art -- 2.1 5G Communication Standard -- 2.2 Physics Simulation in Manufacturing -- 2.3 Digital Twin in Manufacturing -- 3 Modeling of the Architecture for 5G-Enabled Digital Twin -- 3.1 Objectives and Requirements -- 3.2 System Architecture -- 3.3 Interactions and Information Flow -- 4 Implementation -- 4.1 Real System -- 4.2 Communication System -- 4.3 Digital System -- 4.4 Benefits and Challenges -- 5 Summary and Outlook -- References -- A Human-Centered Framework for Scalable Extended Reality Spaces -- 1 Introduction -- 2 Background -- 2.1 Terminology -- 2.2 Developing Collaborative Extended Reality Applications -- 3 XRS Framework: Basic Concept -- 3.1 Scalable Extended Reality (XRS) -- 3.2 Context of Use -- 4 XRS Framework: Requirements -- 4.1 Functional Requirements -- 4.2 Non-functional Requirements -- 5 XRS Framework: Design Solution -- 5.1 Access Points and Data - RQs 1, 2, 17, 18 -- 5.2 Subscribing to Collaborators - RQs 11, 12, 19 -- 5.3 Visualizing Static Scene Components - RQ 13 -- 5.4 Visualizing Dynamic Scene Components - RQs 14, 15, 16 -- 5.5 Visualizing User Location and Activity - RQs 11, 12 -- 5.6 Referencing Scene Components - RQs 3, 4, 7, 8 -- 5.7 Manipulating Dynamic Scene Components - RQs 5, 6, 9, 10 -- 5.8 Scalable Interaction Techniques - RQs 17, 18, 20 -- 6 XRS Framework: Walkthrough -- 6.1 Collaborative Prototyping -- 6.2 Training and Teleoperation -- 7 Conclusion -- References.
A Holistic Framework for Factory Planning Using Reinforcement Learning -- 1 Introduction -- 2 State of the Art -- 2.1 Introduction to Factory Layout Planning -- 2.2 Approaches for the Early Phase of Factory Layout Planning -- 2.3 Introduction to Reinforcement Learning -- 3 Research Gap -- 4 Framework for Factory Layout Planning Using Reinforcement Learning -- 4.1 Requirements -- 4.2 Description of the Framework -- 5 Step 5: Manual Planning -- 5.1 Evaluation of the Framework -- 6 Conclusion and Outlook -- References -- Simulation-Based Investigation of the Distortion of Milled Thin-Walled Aluminum Structural Parts Due to Residual Stresses -- 1 Introduction -- 2 Methodology -- 3 Experiments -- 3.1 Initial Bulk Residual Stress Characterization -- 3.2 Machining Induced Residual Stress Characterization -- 3.3 Machining Induced Residual Stress as Driver for Distortion -- 3.4 Superposition of IBRS and MIRS and Its Effect on Distortion -- 4 Simulation Models -- 4.1 Distortion Prediction Model -- 4.2 Cutting Model to Predict the MIRS -- 5 Development of Compensation Techniques -- 6 Summary -- References -- Prediction of Thermodynamic Properties of Fluids at Extreme Conditions: Assessment of the Consistency of Molecular-Based Models -- 1 Introduction -- 2 Methods -- 2.1 Brown's Characteristic Curves -- 2.2 Substances -- 2.3 Molecular Simulation -- 2.4 Molecular-Based Equation of States -- 3 Results -- 3.1 Lennard-Jones Fluids -- 3.2 Mie Fluids -- 3.3 Toluene, Ethanol, and Dimethyl Ether -- 4 Conclusions -- References -- A Methodology for Developing a Model for Energy Prediction in Additive Manufacturing Exemplified by High-Speed Laser Directed Energy Deposition -- 1 Introduction -- 2 State of the Art -- 2.1 High-Speed Laser Directed Energy Deposition as an Additive Manufacturing Process -- 2.2 Current Discussion of the Environmental Impact of DED.
2.3 Requirements -- 3 Approach for Creating an Energy Prediction Model -- 3.1 Capturing the Structure -- 3.2 Process Analysis -- 3.3 Analysis of the Process Parameters -- 3.4 Creating the Model -- 4 Example of an Application Using HS DED-LB -- 4.1 Capturing the Structure -- 4.2 Process Analysis -- 4.3 Analysis of the Process Parameters -- 4.4 Creating the Model -- 4.5 Exemplary Application and Validation -- 5 Conclusion -- References -- Framework to Improve the Energy Performance During Design for Additive Manufacturing -- 1 Introduction -- 2 Research Background -- 2.1 Energy Performance Issues in Additive Manufacturing -- 2.2 Research Target and Tasks for This Work -- 3 Framework of Energy Performance Improvement in DfAM -- 3.1 Overview of the Framework -- 3.2 Structural Topology Optimization -- 3.3 Tool-Path Length Assessment -- 3.4 Multi-player Competition Algorithm -- 4 Use Cases -- 4.1 Use Case 1: 2D Optimization Problem -- 4.2 Use Case 2: 3D Optimization Problem -- 5 Discussion -- 6 Conclusion and Outlook -- References -- Investigation of Micro Grinding via Kinematic Simulations -- 1 Introduction -- 2 Properties of the MPGTs -- 3 Model of the MPGT for Kinematic Simulations -- 3.1 Analysis of the Grit Size Distribution -- 3.2 Analysis of the Grit Shape -- 3.3 Requirements and Assumptions for the Tool Model -- 3.4 Modeling of the Virtual Bond of the Tool Model -- 3.5 Validation of the Bond Thickness -- 3.6 Modeling of the Abrasive Grits -- 3.7 Positioning of the Virtual Grit Representations on the Virtual Tool -- 3.8 Evaluation of the Grit Size on the Real Tool -- 3.9 Adaption of the Grit Sizes for the Tool Model -- 3.10 Conclusion on Tool Modeling -- 4 Setup of the Simulation -- 4.1 Workpiece Representation Within the Simulation -- 4.2 Kinematics and Time Discretization -- 4.3 Calculation of the Tool-Workpiece Intersection.
5 Application of the Simulation Model to the Investigation of Micro Grinding -- 5.1 Influence of the Feed Rate on the Resulting Surface Topography -- 5.2 Calculation of the Undeformed Chip Thickness -- 6 Conclusion and Outlook -- References -- Molecular Dynamics Simulation of Cutting Processes: The Influence of Cutting Fluids at the Atomistic Scale -- 1 Introduction -- 2 Methods -- 2.1 Simulation Scenario -- 2.2 Molecular Model -- 2.3 Definition of Observables -- 3 Results -- 3.1 Mechanical Properties -- 3.2 Workpiece Deformation -- 3.3 Lubrication and Formation of Tribofilm -- 3.4 Thermal Properties -- 3.5 Reproducibility -- 4 Conclusions -- References -- Visual Analysis and Anomaly Detection of Material Flow in Manufacturing -- 1 Introduction -- 2 Method -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Visualization -- 3 Discussion -- 4 Conclusion -- References -- Author Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Garth, Christoph.
Linke, Barbara S.
Print version: Aurich, Jan C. Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes Cham : Springer International Publishing AG,c2023 9783031357787
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30625775 Click to View
language English
format eBook
author Aurich, Jan C.
spellingShingle Aurich, Jan C.
Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes.
Intro -- Preface -- Acknowledgement -- Contents -- List of Contributors -- Discrete Filter and Non-Gaussian Noise for Fast Roughness Simulations with Gaussian Processes -- 1 Introduction -- 2 Background -- 2.1 Roughness Model with Gaussian Processes -- 2.2 Simulation of Rough Surfaces -- 2.3 Related Work -- 3 Gaussian Process Filter -- 3.1 Discrete Filter -- 3.2 Discrete Filter with FFT -- 4 Experiments -- 4.1 Timings of the Discrete Filter with SciPy and CuFFT -- 4.2 Benchmarking Discrete Filter -- 5 Applications -- 6 Conclusion -- References -- Phase Field Simulations for Fatigue Failure Prediction in Manufacturing Processes -- 1 Introduction -- 2 A Phase Field Model for Cyclic Fatigue -- 2.1 A Time-Cycle Transformation in the Phase Field Fatigue Model -- 3 Phase Field Model in the Context of Manufacturing Process -- 3.1 Application in the Cold Forging Process -- 3.2 Modeling Cold Forging Process Using Phase Field Method -- 3.3 Phase Field Fatigue Model in Cylindrical Coordinate System -- 3.4 Phase Field Simulation of Cold Forging Process -- 4 Conclusion -- References -- Embedding-Space Explanations of Learned Mixture Behavior -- 1 Introduction -- 2 Rangesets -- 2.1 Motivation -- 2.2 Rangeset Construction -- 2.3 Application to Process-Level -- 3 Decision Boundary Visualization -- 3.1 CoFFi -- 3.2 Chemical Classes in Latent Feature Space -- 3.3 Latent Features in Physicochemical Descriptor Space -- 4 Conclusion and Future Work -- References -- Insight into Indentation Processes of Ni-Graphene Nanocomposites by Molecular Dynamics Simulation -- 1 Introduction -- 2 Method -- 3 Ni Single Crystal -- 4 Ni Bi-crystal -- 5 Ni Polycrystal -- 6 Summary -- References -- Physical Modeling of Grinding Forces -- 1 Introduction -- 2 Experimental Investigation -- 2.1 Requirements for Performing Experiments -- 2.2 Preparations for the Scratch Tests.
2.3 Performing Scratch Tests in Dry Conditions -- 2.4 Performing Scratch Tests in Wet Conditions -- 3 Development of the Grinding Model -- 3.1 Selection of the Suitable Material Model -- 3.2 Discretization Approaches -- 3.3 Simulative Integration of the Cooling Lubricants -- 4 Conclusion -- References -- Modeling and Implementation of a 5G-Enabled Digital Twin of a Machine Tool Based on Physics Simulation -- 1 Motivation -- 2 State of the Art -- 2.1 5G Communication Standard -- 2.2 Physics Simulation in Manufacturing -- 2.3 Digital Twin in Manufacturing -- 3 Modeling of the Architecture for 5G-Enabled Digital Twin -- 3.1 Objectives and Requirements -- 3.2 System Architecture -- 3.3 Interactions and Information Flow -- 4 Implementation -- 4.1 Real System -- 4.2 Communication System -- 4.3 Digital System -- 4.4 Benefits and Challenges -- 5 Summary and Outlook -- References -- A Human-Centered Framework for Scalable Extended Reality Spaces -- 1 Introduction -- 2 Background -- 2.1 Terminology -- 2.2 Developing Collaborative Extended Reality Applications -- 3 XRS Framework: Basic Concept -- 3.1 Scalable Extended Reality (XRS) -- 3.2 Context of Use -- 4 XRS Framework: Requirements -- 4.1 Functional Requirements -- 4.2 Non-functional Requirements -- 5 XRS Framework: Design Solution -- 5.1 Access Points and Data - RQs 1, 2, 17, 18 -- 5.2 Subscribing to Collaborators - RQs 11, 12, 19 -- 5.3 Visualizing Static Scene Components - RQ 13 -- 5.4 Visualizing Dynamic Scene Components - RQs 14, 15, 16 -- 5.5 Visualizing User Location and Activity - RQs 11, 12 -- 5.6 Referencing Scene Components - RQs 3, 4, 7, 8 -- 5.7 Manipulating Dynamic Scene Components - RQs 5, 6, 9, 10 -- 5.8 Scalable Interaction Techniques - RQs 17, 18, 20 -- 6 XRS Framework: Walkthrough -- 6.1 Collaborative Prototyping -- 6.2 Training and Teleoperation -- 7 Conclusion -- References.
A Holistic Framework for Factory Planning Using Reinforcement Learning -- 1 Introduction -- 2 State of the Art -- 2.1 Introduction to Factory Layout Planning -- 2.2 Approaches for the Early Phase of Factory Layout Planning -- 2.3 Introduction to Reinforcement Learning -- 3 Research Gap -- 4 Framework for Factory Layout Planning Using Reinforcement Learning -- 4.1 Requirements -- 4.2 Description of the Framework -- 5 Step 5: Manual Planning -- 5.1 Evaluation of the Framework -- 6 Conclusion and Outlook -- References -- Simulation-Based Investigation of the Distortion of Milled Thin-Walled Aluminum Structural Parts Due to Residual Stresses -- 1 Introduction -- 2 Methodology -- 3 Experiments -- 3.1 Initial Bulk Residual Stress Characterization -- 3.2 Machining Induced Residual Stress Characterization -- 3.3 Machining Induced Residual Stress as Driver for Distortion -- 3.4 Superposition of IBRS and MIRS and Its Effect on Distortion -- 4 Simulation Models -- 4.1 Distortion Prediction Model -- 4.2 Cutting Model to Predict the MIRS -- 5 Development of Compensation Techniques -- 6 Summary -- References -- Prediction of Thermodynamic Properties of Fluids at Extreme Conditions: Assessment of the Consistency of Molecular-Based Models -- 1 Introduction -- 2 Methods -- 2.1 Brown's Characteristic Curves -- 2.2 Substances -- 2.3 Molecular Simulation -- 2.4 Molecular-Based Equation of States -- 3 Results -- 3.1 Lennard-Jones Fluids -- 3.2 Mie Fluids -- 3.3 Toluene, Ethanol, and Dimethyl Ether -- 4 Conclusions -- References -- A Methodology for Developing a Model for Energy Prediction in Additive Manufacturing Exemplified by High-Speed Laser Directed Energy Deposition -- 1 Introduction -- 2 State of the Art -- 2.1 High-Speed Laser Directed Energy Deposition as an Additive Manufacturing Process -- 2.2 Current Discussion of the Environmental Impact of DED.
2.3 Requirements -- 3 Approach for Creating an Energy Prediction Model -- 3.1 Capturing the Structure -- 3.2 Process Analysis -- 3.3 Analysis of the Process Parameters -- 3.4 Creating the Model -- 4 Example of an Application Using HS DED-LB -- 4.1 Capturing the Structure -- 4.2 Process Analysis -- 4.3 Analysis of the Process Parameters -- 4.4 Creating the Model -- 4.5 Exemplary Application and Validation -- 5 Conclusion -- References -- Framework to Improve the Energy Performance During Design for Additive Manufacturing -- 1 Introduction -- 2 Research Background -- 2.1 Energy Performance Issues in Additive Manufacturing -- 2.2 Research Target and Tasks for This Work -- 3 Framework of Energy Performance Improvement in DfAM -- 3.1 Overview of the Framework -- 3.2 Structural Topology Optimization -- 3.3 Tool-Path Length Assessment -- 3.4 Multi-player Competition Algorithm -- 4 Use Cases -- 4.1 Use Case 1: 2D Optimization Problem -- 4.2 Use Case 2: 3D Optimization Problem -- 5 Discussion -- 6 Conclusion and Outlook -- References -- Investigation of Micro Grinding via Kinematic Simulations -- 1 Introduction -- 2 Properties of the MPGTs -- 3 Model of the MPGT for Kinematic Simulations -- 3.1 Analysis of the Grit Size Distribution -- 3.2 Analysis of the Grit Shape -- 3.3 Requirements and Assumptions for the Tool Model -- 3.4 Modeling of the Virtual Bond of the Tool Model -- 3.5 Validation of the Bond Thickness -- 3.6 Modeling of the Abrasive Grits -- 3.7 Positioning of the Virtual Grit Representations on the Virtual Tool -- 3.8 Evaluation of the Grit Size on the Real Tool -- 3.9 Adaption of the Grit Sizes for the Tool Model -- 3.10 Conclusion on Tool Modeling -- 4 Setup of the Simulation -- 4.1 Workpiece Representation Within the Simulation -- 4.2 Kinematics and Time Discretization -- 4.3 Calculation of the Tool-Workpiece Intersection.
5 Application of the Simulation Model to the Investigation of Micro Grinding -- 5.1 Influence of the Feed Rate on the Resulting Surface Topography -- 5.2 Calculation of the Undeformed Chip Thickness -- 6 Conclusion and Outlook -- References -- Molecular Dynamics Simulation of Cutting Processes: The Influence of Cutting Fluids at the Atomistic Scale -- 1 Introduction -- 2 Methods -- 2.1 Simulation Scenario -- 2.2 Molecular Model -- 2.3 Definition of Observables -- 3 Results -- 3.1 Mechanical Properties -- 3.2 Workpiece Deformation -- 3.3 Lubrication and Formation of Tribofilm -- 3.4 Thermal Properties -- 3.5 Reproducibility -- 4 Conclusions -- References -- Visual Analysis and Anomaly Detection of Material Flow in Manufacturing -- 1 Introduction -- 2 Method -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Visualization -- 3 Discussion -- 4 Conclusion -- References -- Author Index.
author_facet Aurich, Jan C.
Garth, Christoph.
Linke, Barbara S.
author_variant j c a jc jca
author2 Garth, Christoph.
Linke, Barbara S.
author2_variant c g cg
b s l bs bsl
author2_role TeilnehmendeR
TeilnehmendeR
author_sort Aurich, Jan C.
title Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes.
title_full Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes.
title_fullStr Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes.
title_full_unstemmed Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes.
title_auth Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes.
title_new Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes.
title_sort proceedings of the 3rd conference on physical modeling for virtual manufacturing systems and processes.
publisher Springer International Publishing AG,
publishDate 2023
physical 1 online resource (305 pages)
edition 1st ed.
contents Intro -- Preface -- Acknowledgement -- Contents -- List of Contributors -- Discrete Filter and Non-Gaussian Noise for Fast Roughness Simulations with Gaussian Processes -- 1 Introduction -- 2 Background -- 2.1 Roughness Model with Gaussian Processes -- 2.2 Simulation of Rough Surfaces -- 2.3 Related Work -- 3 Gaussian Process Filter -- 3.1 Discrete Filter -- 3.2 Discrete Filter with FFT -- 4 Experiments -- 4.1 Timings of the Discrete Filter with SciPy and CuFFT -- 4.2 Benchmarking Discrete Filter -- 5 Applications -- 6 Conclusion -- References -- Phase Field Simulations for Fatigue Failure Prediction in Manufacturing Processes -- 1 Introduction -- 2 A Phase Field Model for Cyclic Fatigue -- 2.1 A Time-Cycle Transformation in the Phase Field Fatigue Model -- 3 Phase Field Model in the Context of Manufacturing Process -- 3.1 Application in the Cold Forging Process -- 3.2 Modeling Cold Forging Process Using Phase Field Method -- 3.3 Phase Field Fatigue Model in Cylindrical Coordinate System -- 3.4 Phase Field Simulation of Cold Forging Process -- 4 Conclusion -- References -- Embedding-Space Explanations of Learned Mixture Behavior -- 1 Introduction -- 2 Rangesets -- 2.1 Motivation -- 2.2 Rangeset Construction -- 2.3 Application to Process-Level -- 3 Decision Boundary Visualization -- 3.1 CoFFi -- 3.2 Chemical Classes in Latent Feature Space -- 3.3 Latent Features in Physicochemical Descriptor Space -- 4 Conclusion and Future Work -- References -- Insight into Indentation Processes of Ni-Graphene Nanocomposites by Molecular Dynamics Simulation -- 1 Introduction -- 2 Method -- 3 Ni Single Crystal -- 4 Ni Bi-crystal -- 5 Ni Polycrystal -- 6 Summary -- References -- Physical Modeling of Grinding Forces -- 1 Introduction -- 2 Experimental Investigation -- 2.1 Requirements for Performing Experiments -- 2.2 Preparations for the Scratch Tests.
2.3 Performing Scratch Tests in Dry Conditions -- 2.4 Performing Scratch Tests in Wet Conditions -- 3 Development of the Grinding Model -- 3.1 Selection of the Suitable Material Model -- 3.2 Discretization Approaches -- 3.3 Simulative Integration of the Cooling Lubricants -- 4 Conclusion -- References -- Modeling and Implementation of a 5G-Enabled Digital Twin of a Machine Tool Based on Physics Simulation -- 1 Motivation -- 2 State of the Art -- 2.1 5G Communication Standard -- 2.2 Physics Simulation in Manufacturing -- 2.3 Digital Twin in Manufacturing -- 3 Modeling of the Architecture for 5G-Enabled Digital Twin -- 3.1 Objectives and Requirements -- 3.2 System Architecture -- 3.3 Interactions and Information Flow -- 4 Implementation -- 4.1 Real System -- 4.2 Communication System -- 4.3 Digital System -- 4.4 Benefits and Challenges -- 5 Summary and Outlook -- References -- A Human-Centered Framework for Scalable Extended Reality Spaces -- 1 Introduction -- 2 Background -- 2.1 Terminology -- 2.2 Developing Collaborative Extended Reality Applications -- 3 XRS Framework: Basic Concept -- 3.1 Scalable Extended Reality (XRS) -- 3.2 Context of Use -- 4 XRS Framework: Requirements -- 4.1 Functional Requirements -- 4.2 Non-functional Requirements -- 5 XRS Framework: Design Solution -- 5.1 Access Points and Data - RQs 1, 2, 17, 18 -- 5.2 Subscribing to Collaborators - RQs 11, 12, 19 -- 5.3 Visualizing Static Scene Components - RQ 13 -- 5.4 Visualizing Dynamic Scene Components - RQs 14, 15, 16 -- 5.5 Visualizing User Location and Activity - RQs 11, 12 -- 5.6 Referencing Scene Components - RQs 3, 4, 7, 8 -- 5.7 Manipulating Dynamic Scene Components - RQs 5, 6, 9, 10 -- 5.8 Scalable Interaction Techniques - RQs 17, 18, 20 -- 6 XRS Framework: Walkthrough -- 6.1 Collaborative Prototyping -- 6.2 Training and Teleoperation -- 7 Conclusion -- References.
A Holistic Framework for Factory Planning Using Reinforcement Learning -- 1 Introduction -- 2 State of the Art -- 2.1 Introduction to Factory Layout Planning -- 2.2 Approaches for the Early Phase of Factory Layout Planning -- 2.3 Introduction to Reinforcement Learning -- 3 Research Gap -- 4 Framework for Factory Layout Planning Using Reinforcement Learning -- 4.1 Requirements -- 4.2 Description of the Framework -- 5 Step 5: Manual Planning -- 5.1 Evaluation of the Framework -- 6 Conclusion and Outlook -- References -- Simulation-Based Investigation of the Distortion of Milled Thin-Walled Aluminum Structural Parts Due to Residual Stresses -- 1 Introduction -- 2 Methodology -- 3 Experiments -- 3.1 Initial Bulk Residual Stress Characterization -- 3.2 Machining Induced Residual Stress Characterization -- 3.3 Machining Induced Residual Stress as Driver for Distortion -- 3.4 Superposition of IBRS and MIRS and Its Effect on Distortion -- 4 Simulation Models -- 4.1 Distortion Prediction Model -- 4.2 Cutting Model to Predict the MIRS -- 5 Development of Compensation Techniques -- 6 Summary -- References -- Prediction of Thermodynamic Properties of Fluids at Extreme Conditions: Assessment of the Consistency of Molecular-Based Models -- 1 Introduction -- 2 Methods -- 2.1 Brown's Characteristic Curves -- 2.2 Substances -- 2.3 Molecular Simulation -- 2.4 Molecular-Based Equation of States -- 3 Results -- 3.1 Lennard-Jones Fluids -- 3.2 Mie Fluids -- 3.3 Toluene, Ethanol, and Dimethyl Ether -- 4 Conclusions -- References -- A Methodology for Developing a Model for Energy Prediction in Additive Manufacturing Exemplified by High-Speed Laser Directed Energy Deposition -- 1 Introduction -- 2 State of the Art -- 2.1 High-Speed Laser Directed Energy Deposition as an Additive Manufacturing Process -- 2.2 Current Discussion of the Environmental Impact of DED.
2.3 Requirements -- 3 Approach for Creating an Energy Prediction Model -- 3.1 Capturing the Structure -- 3.2 Process Analysis -- 3.3 Analysis of the Process Parameters -- 3.4 Creating the Model -- 4 Example of an Application Using HS DED-LB -- 4.1 Capturing the Structure -- 4.2 Process Analysis -- 4.3 Analysis of the Process Parameters -- 4.4 Creating the Model -- 4.5 Exemplary Application and Validation -- 5 Conclusion -- References -- Framework to Improve the Energy Performance During Design for Additive Manufacturing -- 1 Introduction -- 2 Research Background -- 2.1 Energy Performance Issues in Additive Manufacturing -- 2.2 Research Target and Tasks for This Work -- 3 Framework of Energy Performance Improvement in DfAM -- 3.1 Overview of the Framework -- 3.2 Structural Topology Optimization -- 3.3 Tool-Path Length Assessment -- 3.4 Multi-player Competition Algorithm -- 4 Use Cases -- 4.1 Use Case 1: 2D Optimization Problem -- 4.2 Use Case 2: 3D Optimization Problem -- 5 Discussion -- 6 Conclusion and Outlook -- References -- Investigation of Micro Grinding via Kinematic Simulations -- 1 Introduction -- 2 Properties of the MPGTs -- 3 Model of the MPGT for Kinematic Simulations -- 3.1 Analysis of the Grit Size Distribution -- 3.2 Analysis of the Grit Shape -- 3.3 Requirements and Assumptions for the Tool Model -- 3.4 Modeling of the Virtual Bond of the Tool Model -- 3.5 Validation of the Bond Thickness -- 3.6 Modeling of the Abrasive Grits -- 3.7 Positioning of the Virtual Grit Representations on the Virtual Tool -- 3.8 Evaluation of the Grit Size on the Real Tool -- 3.9 Adaption of the Grit Sizes for the Tool Model -- 3.10 Conclusion on Tool Modeling -- 4 Setup of the Simulation -- 4.1 Workpiece Representation Within the Simulation -- 4.2 Kinematics and Time Discretization -- 4.3 Calculation of the Tool-Workpiece Intersection.
5 Application of the Simulation Model to the Investigation of Micro Grinding -- 5.1 Influence of the Feed Rate on the Resulting Surface Topography -- 5.2 Calculation of the Undeformed Chip Thickness -- 6 Conclusion and Outlook -- References -- Molecular Dynamics Simulation of Cutting Processes: The Influence of Cutting Fluids at the Atomistic Scale -- 1 Introduction -- 2 Methods -- 2.1 Simulation Scenario -- 2.2 Molecular Model -- 2.3 Definition of Observables -- 3 Results -- 3.1 Mechanical Properties -- 3.2 Workpiece Deformation -- 3.3 Lubrication and Formation of Tribofilm -- 3.4 Thermal Properties -- 3.5 Reproducibility -- 4 Conclusions -- References -- Visual Analysis and Anomaly Detection of Material Flow in Manufacturing -- 1 Introduction -- 2 Method -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Visualization -- 3 Discussion -- 4 Conclusion -- References -- Author Index.
isbn 9783031357794
9783031357787
callnumber-first T - Technology
callnumber-subject T - General Technology
callnumber-label T55
callnumber-sort T 255.4 260.8
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30625775
illustrated Not Illustrated
oclc_num 1390758028
work_keys_str_mv AT aurichjanc proceedingsofthe3rdconferenceonphysicalmodelingforvirtualmanufacturingsystemsandprocesses
AT garthchristoph proceedingsofthe3rdconferenceonphysicalmodelingforvirtualmanufacturingsystemsandprocesses
AT linkebarbaras proceedingsofthe3rdconferenceonphysicalmodelingforvirtualmanufacturingsystemsandprocesses
status_str n
ids_txt_mv (MiAaPQ)50030625775
(Au-PeEL)EBL30625775
(OCoLC)1390758028
carrierType_str_mv cr
is_hierarchy_title Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes.
author2_original_writing_str_mv noLinkedField
noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331071146164224
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11145nam a22004453i 4500</leader><controlfield tag="001">50030625775</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073851.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2023 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031357794</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783031357787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)50030625775</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL30625775</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1390758028</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">T55.4-60.8</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aurich, Jan C.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2023.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (305 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgement -- Contents -- List of Contributors -- Discrete Filter and Non-Gaussian Noise for Fast Roughness Simulations with Gaussian Processes -- 1 Introduction -- 2 Background -- 2.1 Roughness Model with Gaussian Processes -- 2.2 Simulation of Rough Surfaces -- 2.3 Related Work -- 3 Gaussian Process Filter -- 3.1 Discrete Filter -- 3.2 Discrete Filter with FFT -- 4 Experiments -- 4.1 Timings of the Discrete Filter with SciPy and CuFFT -- 4.2 Benchmarking Discrete Filter -- 5 Applications -- 6 Conclusion -- References -- Phase Field Simulations for Fatigue Failure Prediction in Manufacturing Processes -- 1 Introduction -- 2 A Phase Field Model for Cyclic Fatigue -- 2.1 A Time-Cycle Transformation in the Phase Field Fatigue Model -- 3 Phase Field Model in the Context of Manufacturing Process -- 3.1 Application in the Cold Forging Process -- 3.2 Modeling Cold Forging Process Using Phase Field Method -- 3.3 Phase Field Fatigue Model in Cylindrical Coordinate System -- 3.4 Phase Field Simulation of Cold Forging Process -- 4 Conclusion -- References -- Embedding-Space Explanations of Learned Mixture Behavior -- 1 Introduction -- 2 Rangesets -- 2.1 Motivation -- 2.2 Rangeset Construction -- 2.3 Application to Process-Level -- 3 Decision Boundary Visualization -- 3.1 CoFFi -- 3.2 Chemical Classes in Latent Feature Space -- 3.3 Latent Features in Physicochemical Descriptor Space -- 4 Conclusion and Future Work -- References -- Insight into Indentation Processes of Ni-Graphene Nanocomposites by Molecular Dynamics Simulation -- 1 Introduction -- 2 Method -- 3 Ni Single Crystal -- 4 Ni Bi-crystal -- 5 Ni Polycrystal -- 6 Summary -- References -- Physical Modeling of Grinding Forces -- 1 Introduction -- 2 Experimental Investigation -- 2.1 Requirements for Performing Experiments -- 2.2 Preparations for the Scratch Tests.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 Performing Scratch Tests in Dry Conditions -- 2.4 Performing Scratch Tests in Wet Conditions -- 3 Development of the Grinding Model -- 3.1 Selection of the Suitable Material Model -- 3.2 Discretization Approaches -- 3.3 Simulative Integration of the Cooling Lubricants -- 4 Conclusion -- References -- Modeling and Implementation of a 5G-Enabled Digital Twin of a Machine Tool Based on Physics Simulation -- 1 Motivation -- 2 State of the Art -- 2.1 5G Communication Standard -- 2.2 Physics Simulation in Manufacturing -- 2.3 Digital Twin in Manufacturing -- 3 Modeling of the Architecture for 5G-Enabled Digital Twin -- 3.1 Objectives and Requirements -- 3.2 System Architecture -- 3.3 Interactions and Information Flow -- 4 Implementation -- 4.1 Real System -- 4.2 Communication System -- 4.3 Digital System -- 4.4 Benefits and Challenges -- 5 Summary and Outlook -- References -- A Human-Centered Framework for Scalable Extended Reality Spaces -- 1 Introduction -- 2 Background -- 2.1 Terminology -- 2.2 Developing Collaborative Extended Reality Applications -- 3 XRS Framework: Basic Concept -- 3.1 Scalable Extended Reality (XRS) -- 3.2 Context of Use -- 4 XRS Framework: Requirements -- 4.1 Functional Requirements -- 4.2 Non-functional Requirements -- 5 XRS Framework: Design Solution -- 5.1 Access Points and Data - RQs 1, 2, 17, 18 -- 5.2 Subscribing to Collaborators - RQs 11, 12, 19 -- 5.3 Visualizing Static Scene Components - RQ 13 -- 5.4 Visualizing Dynamic Scene Components - RQs 14, 15, 16 -- 5.5 Visualizing User Location and Activity - RQs 11, 12 -- 5.6 Referencing Scene Components - RQs 3, 4, 7, 8 -- 5.7 Manipulating Dynamic Scene Components - RQs 5, 6, 9, 10 -- 5.8 Scalable Interaction Techniques - RQs 17, 18, 20 -- 6 XRS Framework: Walkthrough -- 6.1 Collaborative Prototyping -- 6.2 Training and Teleoperation -- 7 Conclusion -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">A Holistic Framework for Factory Planning Using Reinforcement Learning -- 1 Introduction -- 2 State of the Art -- 2.1 Introduction to Factory Layout Planning -- 2.2 Approaches for the Early Phase of Factory Layout Planning -- 2.3 Introduction to Reinforcement Learning -- 3 Research Gap -- 4 Framework for Factory Layout Planning Using Reinforcement Learning -- 4.1 Requirements -- 4.2 Description of the Framework -- 5 Step 5: Manual Planning -- 5.1 Evaluation of the Framework -- 6 Conclusion and Outlook -- References -- Simulation-Based Investigation of the Distortion of Milled Thin-Walled Aluminum Structural Parts Due to Residual Stresses -- 1 Introduction -- 2 Methodology -- 3 Experiments -- 3.1 Initial Bulk Residual Stress Characterization -- 3.2 Machining Induced Residual Stress Characterization -- 3.3 Machining Induced Residual Stress as Driver for Distortion -- 3.4 Superposition of IBRS and MIRS and Its Effect on Distortion -- 4 Simulation Models -- 4.1 Distortion Prediction Model -- 4.2 Cutting Model to Predict the MIRS -- 5 Development of Compensation Techniques -- 6 Summary -- References -- Prediction of Thermodynamic Properties of Fluids at Extreme Conditions: Assessment of the Consistency of Molecular-Based Models -- 1 Introduction -- 2 Methods -- 2.1 Brown's Characteristic Curves -- 2.2 Substances -- 2.3 Molecular Simulation -- 2.4 Molecular-Based Equation of States -- 3 Results -- 3.1 Lennard-Jones Fluids -- 3.2 Mie Fluids -- 3.3 Toluene, Ethanol, and Dimethyl Ether -- 4 Conclusions -- References -- A Methodology for Developing a Model for Energy Prediction in Additive Manufacturing Exemplified by High-Speed Laser Directed Energy Deposition -- 1 Introduction -- 2 State of the Art -- 2.1 High-Speed Laser Directed Energy Deposition as an Additive Manufacturing Process -- 2.2 Current Discussion of the Environmental Impact of DED.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 Requirements -- 3 Approach for Creating an Energy Prediction Model -- 3.1 Capturing the Structure -- 3.2 Process Analysis -- 3.3 Analysis of the Process Parameters -- 3.4 Creating the Model -- 4 Example of an Application Using HS DED-LB -- 4.1 Capturing the Structure -- 4.2 Process Analysis -- 4.3 Analysis of the Process Parameters -- 4.4 Creating the Model -- 4.5 Exemplary Application and Validation -- 5 Conclusion -- References -- Framework to Improve the Energy Performance During Design for Additive Manufacturing -- 1 Introduction -- 2 Research Background -- 2.1 Energy Performance Issues in Additive Manufacturing -- 2.2 Research Target and Tasks for This Work -- 3 Framework of Energy Performance Improvement in DfAM -- 3.1 Overview of the Framework -- 3.2 Structural Topology Optimization -- 3.3 Tool-Path Length Assessment -- 3.4 Multi-player Competition Algorithm -- 4 Use Cases -- 4.1 Use Case 1: 2D Optimization Problem -- 4.2 Use Case 2: 3D Optimization Problem -- 5 Discussion -- 6 Conclusion and Outlook -- References -- Investigation of Micro Grinding via Kinematic Simulations -- 1 Introduction -- 2 Properties of the MPGTs -- 3 Model of the MPGT for Kinematic Simulations -- 3.1 Analysis of the Grit Size Distribution -- 3.2 Analysis of the Grit Shape -- 3.3 Requirements and Assumptions for the Tool Model -- 3.4 Modeling of the Virtual Bond of the Tool Model -- 3.5 Validation of the Bond Thickness -- 3.6 Modeling of the Abrasive Grits -- 3.7 Positioning of the Virtual Grit Representations on the Virtual Tool -- 3.8 Evaluation of the Grit Size on the Real Tool -- 3.9 Adaption of the Grit Sizes for the Tool Model -- 3.10 Conclusion on Tool Modeling -- 4 Setup of the Simulation -- 4.1 Workpiece Representation Within the Simulation -- 4.2 Kinematics and Time Discretization -- 4.3 Calculation of the Tool-Workpiece Intersection.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5 Application of the Simulation Model to the Investigation of Micro Grinding -- 5.1 Influence of the Feed Rate on the Resulting Surface Topography -- 5.2 Calculation of the Undeformed Chip Thickness -- 6 Conclusion and Outlook -- References -- Molecular Dynamics Simulation of Cutting Processes: The Influence of Cutting Fluids at the Atomistic Scale -- 1 Introduction -- 2 Methods -- 2.1 Simulation Scenario -- 2.2 Molecular Model -- 2.3 Definition of Observables -- 3 Results -- 3.1 Mechanical Properties -- 3.2 Workpiece Deformation -- 3.3 Lubrication and Formation of Tribofilm -- 3.4 Thermal Properties -- 3.5 Reproducibility -- 4 Conclusions -- References -- Visual Analysis and Anomaly Detection of Material Flow in Manufacturing -- 1 Introduction -- 2 Method -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Visualization -- 3 Discussion -- 4 Conclusion -- References -- Author Index.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garth, Christoph.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Linke, Barbara S.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Aurich, Jan C.</subfield><subfield code="t">Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes</subfield><subfield code="d">Cham : Springer International Publishing AG,c2023</subfield><subfield code="z">9783031357787</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30625775</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>