Coil Tubing Unit for Oil Production and Remedial Measures.

Saved in:
Bibliographic Details
:
Place / Publishing House:Aalborg : : River Publishers,, 2021.
Ã2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (156 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Front Cover
  • Coil Tubing Unit for Oil Production and Remedial Measures
  • Contents
  • Preface
  • List of Figures
  • List of Tables
  • List of Abbreviations
  • 1 Nitrogen Application
  • 1.1 Introduction
  • 1.2 History of N2
  • 1.2.1 N2 Properties
  • 1.3 Cryogenics
  • 1.3.1 Introduction
  • 1.4 Basic Equipment
  • 1.4.1 Storage Tank
  • 1.4.2 Pumping System
  • 1.4.3 Vaporizer System
  • 1.5 Safety
  • 1.5.1 General Information
  • 1.5.2 Safety Bulletin from CGA (Compressed Gas Association)
  • 1.5.3 Oxygen-deficient Atmospheres
  • 1.5.4 Safety for Handling and Exposure
  • 1.6 N2 Service Applications
  • 1.6.1 Displacement
  • 1.6.2 Nitrified Fluids-Acidisation
  • 1.6.3 Atomized Atom
  • 1.6.4 Foamed Acid
  • 1.6.4.1 N2 Retention
  • 1.6.4.2 Diverting
  • 1.6.4.3 Production of Fines
  • 1.6.4.4 Foamed Acid Guidelines
  • 1.6.5 Aerating Conventional Fluids
  • 1.6.6 Pipeline Purging
  • 1.6.7 Use of Foam as a Drilling and Workover Fluid
  • 1.7 Foam Clean Out
  • 1.7.1 Introduction
  • 1.7.2 Foam Stability and Viscosity
  • 1.7.3 Fire Control
  • 1.8 Water Control Technique by N2 Injection
  • 1.8.1 Introduction
  • 1.8.2 Technology
  • 1.8.3 Job Description
  • 1.8.4 Commercial Viability
  • 1.8.5 Quick and Easy
  • 1.8.6 Versatility and Adaptability
  • 1.8.7 Economical
  • 1.8.8 Freeding Differentially Stuck Drill Pipe
  • 1.8.8.1 N2 Lift
  • 1.8.8.2 N2 cushion
  • 1.9 Case Study - I
  • 1.10 Results/Remarks
  • 1.11 Conclusion
  • 1.12 Specification of N2 Pumpers Available with WSS COLD END
  • 2 Water Control
  • 2.1 Introduction to Water Production
  • 2.1.1 Methods to Predict, Prevent, Delay and Reduce Excessive Water Production
  • 2.1.1.1 Oil and Water production rates and ratios
  • 2.1.1.1.1 Material Mass Balance
  • 2.1.1.1.2 Darcy's Law
  • 2.1.1.1.3 Productivity index
  • 2.1.1.1.4 Simulators
  • 2.1.1.2 Rate-limited facilities
  • 2.1.1.3 Water production effect on bypassed oil.
  • 2.1.1.4 Reservoir maturity
  • 2.1.1.5 Water production rate effect on corrosion rates
  • 2.1.1.6 Water production rate effect on scale deposition rates
  • 2.1.1.7 Water production rate effect on sand production
  • 2.2 Water Production Mechanisms
  • 2.2.1 Completions-Related Mechanisms
  • 2.2.1.1 Casing leaks
  • 2.2.1.2 Channel behind casing
  • 2.2.1.3 Completion into Water
  • 2.2.2 Reservoir-Related Mechanisms
  • 2.2.2.1 Bottomwater
  • 2.2.2.2 Barrier breakdown
  • 2.2.2.3 Coning and cresting
  • 2.2.2.4 Channeling through high permeability
  • 2.2.2.5 Fracture communication between injector and producer
  • 2.2.2.6 Stimulation out of zone
  • 2.3 Preventing Excessive Water Production
  • 2.3.1 Preventing Casing Leaks
  • 2.3.2 Preventing Channels Behind Casing
  • 2.3.3 Preventing Coning and Cresting
  • 2.3.4 Perforating
  • 2.3.5 Fracturing
  • 2.3.6 Artificial Barriers
  • 2.3.7 Dual Completions
  • 2.3.8 Horizontal Wells to Prevent Coning
  • 2.3.9 Preventing Channeling Through High Permeability
  • 2.3.9.1 Perforating
  • 2.3.9.2 Stimulation techniques
  • 2.3.9.3 Permeability reduction
  • 2.3.9.4 Preventing fracture communication between injector and producer
  • 2.3.9.5 Completing to accommodate future water production rates future zonal isolation
  • 2.4 Creative Water Management
  • 2.5 Treatments Used to Reduce Excessive Water Production
  • 2.5.1 Characterizing the Problem
  • 2.5.2 Treatment Design
  • 2.5.3 Expected Treatment Effect on Water Production
  • 2.5.4 Treatment Types
  • 2.5.4.1 Zone sealants
  • 2.5.4.2 Permeability-Reducing Agents (PRA)
  • 2.5.4.3 Relative Permeability Modifiers (RPM)
  • 2.5.5 Description of Previously Applied Treatments
  • 2.5.5.1 Mechanical plugs
  • 2.5.5.2 Sand plugs
  • 2.5.5.3 Water-based cement
  • 2.5.5.4 Hydrocarbon-based cements
  • 2.5.5.5 Externally activated silicates
  • 2.5.5.6 Internally Activated Silicates (IAS).
  • 2.5.5.7 Monomer systems
  • 2.5.5.8 Crosslinked polymer systems
  • 2.5.5.9 Surface-active RPMs
  • 2.5.5.10 Foams
  • 2.5.6 Treatment Lifetime
  • 2.6 Selecting Treatment Composition and Volume
  • 2.6.1 Placement Techniques
  • 2.6.1.1 Bullheading
  • 2.6.1.2 Mechanical packer placement
  • 2.6.1.3 Dual injection
  • 2.6.1.4 Isoflow
  • 2.6.2 Viscosity Considerations
  • 2.6.3 Temperature Considerations
  • References
  • 3 Sand Control
  • 3.1 Sand Control Introduction
  • 3.1.1 Formation Damage
  • 3.1.2 Fines Migration
  • 3.1.3 Sand Production Mechanisms
  • 3.2 Formation Sand
  • 3.2.1 Petro Physical Properties
  • 3.2.2 Geological Deposition of Sand
  • 3.2.2.1 Desert aeolian sands
  • 3.2.2.2 Marine shelf sand
  • 3.2.2.3 Beaches, barriers and bar
  • 3.2.2.4 Tidal flat and estuarine sands
  • 3.2.2.5 Fluviatile sands
  • 3.2.2.6 Alluvial sands
  • 3.2.3 Formation Sand Description
  • 3.2.3.1 Quicksand
  • 3.2.3.2 Partially consolidated sand
  • 3.2.3.3 Friable sand
  • 3.3 Causes and Effects of Sand Production
  • 3.3.1 Causes of Sand Production
  • 3.3.1.1 Totally unconsolidated formation
  • 3.3.1.2 High production rates
  • 3.3.1.3 Water productions
  • 3.3.1.4 Increase in water production
  • 3.3.1.5 Reservoir depletion
  • 3.3.2 Effects of Sand Production
  • 3.4 Detection and Prediction of Sand Production
  • 3.4.1 Methods for Monitoring and Detection of Sand Production
  • 3.4.1.1 Wellhead shakeouts
  • 3.4.1.2 Safety plugs and erosion sand probes
  • 3.4.1.3 Sonic sand detection
  • 3.5 Methods for Sand Exclusion
  • 3.5.1 Production Restriction
  • 3.5.2 Mechanical Methods
  • 3.5.3 In-Situ Chemical Consolidation Methods
  • 3.5.4 Combination Methods
  • 3.5.5 Selecting the Appropriate Sand Exclusion Method
  • 3.6 Mechanical Methods of Sand Exclusions
  • 3.6.1 Mechanical Components
  • 3.6.1.1 Pack-sands
  • 3.6.1.2 Liners and screens
  • 3.6.1.3 Carrier fluids.
  • 3.6.2 Tools and Accessories
  • 3.6.3 Completion Tools
  • 3.6.3.1 Gravel-pack Packer
  • 3.6.3.2 Flow sub
  • 3.6.3.3 Mechanical fluid-loss device
  • 3.6.3.4 Safety joint
  • 3.6.3.5 Blank pipe
  • 3.6.3.6 Tell-tale screen
  • 3.6.3.7 Seal assembly
  • 3.6.3.8 Sump packer
  • 3.6.4 Service Tools
  • 3.6.4.1 Crossover service tool
  • 3.6.4.2 Reverse-ball check-valve
  • 3.6.4.3 Swivel joint
  • 3.6.4.4 Washpipe
  • 3.6.4.5 Shifting tools
  • 3.6.4.6 Tool selection
  • 3.7 Mechanical Method: Techniques and Procedures
  • 3.7.1 Gravity Pack
  • 3.7.2 Washdown Method
  • 3.7.3 Circulation Packs
  • 3.7.4 Reverse-circulation Pack
  • 3.7.5 Bullhead Pressure Packs
  • 3.7.6 Circulating-pressure Packs
  • 3.7.7 Slurry Packs
  • 3.7.8 Staged Prepacks and Acid Prepacks
  • 3.7.9 Water-packs and High-rate Water-packs
  • 3.7.10 Fracpacks
  • 3.7.11 Summary
  • 3.7.12 Mechanical Job Designs
  • 3.7.12.1 Formation characteristics
  • 3.7.12.2 Pack-sand selection criteria
  • 3.7.12.3 Screen selection criteria
  • 3.7.12.4 Gravel-pack job calculations
  • 3.7.12.4.1 Pack-sand volume required
  • 3.7.12.4.2 Carrier-fluid Volume
  • 3.7.12.5 Predicting job outcome by computer modeling
  • 3.8 Chemical Consolidation Techniques
  • 3.8.1 Internally Activated Systems
  • 3.8.2 Externally Activated Systems
  • 3.8.3 Application
  • 3.9 Combination Methods
  • 3.9.1 Semicured Resin-coated Pack Gravels
  • 3.9.2 Liquid Resin-coated Pack Gravel
  • 3.10 Horizontal Gravel-Packing
  • 3.10.1 Variables that Affect Sand Delivery
  • 3.10.2 Pump Rate and Fluid Velocity
  • 3.10.3 Alpha and Beta Wave Progression Through the Annulus
  • 3.10.4 Sand Concentration
  • 3.10.5 Placement Procedure and Tool Configuration
  • 3.10.6 Liner/Tailpipe Ratio
  • 3.10.7 Screen/Casing Clearance
  • 3.10.8 Perforation Phasing
  • References
  • Index
  • About the Author
  • Back Cover.