Fatigue of materials and structures : application to design and damage / / edited by Claude Bathias, Andre Pineau.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Year of Publication:2011
Language:English
Online Access:
Physical Description:xiii, 344 p. :; ill.
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Machine generated contents note: ch. 1 Multiaxial Fatigue / Marc Bletry and Georges Cailletaud
  • 1.1.Introduction
  • 1.1.1.Variables in a plane
  • 1.1.2.Invariants
  • 1.1.3.Classification of the cracking modes
  • 1.2.Experimental aspects
  • 1.2.1.Multiaxial fatigue experiments
  • 1.2.2.Main results
  • 1.2.3.Notations
  • 1.3.Criteria specific to the unlimited endurance domain
  • 1.3.1.Background
  • 1.3.2.Global criteria
  • 1.3.3.Critical plane criteria
  • 1.3.4.Relationship between energetic and mesoscopic criteria
  • 1.4.Low cycle fatigue criteria
  • 1.4.1.Brown-Miller
  • 1.4.2.SWT criteria
  • 1.4.3.Jacquelin criterion
  • 1.4.4.Additive criteria under sliding and stress amplitude
  • 1.4.5.Onera model
  • 1.5.Calculating methods of the lifetime under multiaxial conditions
  • 1.5.1.Lifetime at N cycles for a periodic loading
  • 1.5.2.Damage cumulation
  • 1.5.3.Calculation methods
  • 1.6.Conclusion
  • 1.7.Bibliography
  • ch. 2 Cumulative Damage / Jean-Louis Chaboche
  • 2.1.Introduction
  • 2.2.Nonlinear fatigue cumulative damage
  • 2.2.1.Main observations
  • 2.2.2.Various types of nonlinear cumulative damage models
  • 2.2.3.Possible definitions of the damage variable
  • 2.3.A nonlinear cumulative fatigue damage model
  • 2.3.1.General form
  • 2.3.2.Special forms of functions F and G
  • 2.3.3.Application under complex loadings
  • 2.4.Damage law of incremental type
  • 2.4.1.Damage accumulation in strain or energy
  • 2.4.2.Lemaitre's formulation
  • 2.4.3.Other incremental models
  • 2.5.Cumulative damage under fatigue-creep conditions
  • 2.5.1.Rabotnov-Kachanov creep damage law
  • 2.5.2.Fatigue damage
  • 2.5.3.Creep-fatigue interaction
  • 2.5.4.Practical application
  • 2.5.5.Fatigue-oxidation-creep interaction
  • 2.6.Conclusion
  • 2.7.Bibliography
  • ch. 3 Damage Tolerance Design / Raphael Cazes
  • 3.1.Background
  • 3.2.Evolution of the design concept of "fatigue" phenomenon
  • 3.2.1.First approach to fatigue resistance
  • 3.2.2.The "damage tolerance" concept
  • 3.2.3.Consideration of "damage tolerance"
  • 3.3.Impact of damage tolerance on design
  • 3.3.1."Structural" impact
  • 3.3.2."Material" impact
  • 3.4.Calculation of a "stress intensity factor"
  • 3.4.1.Use of the "handbook" (simple cases)
  • 3.4.2.Use of the finite element method: simple and complex cases
  • 3.4.3.A simple method to get new configurations
  • 3.4.4."Superposition" method
  • 3.4.5.Superposition method: applicable examples
  • 3.4.6.Numerical application exercise
  • 3.5.Performing some "damage tolerance" calculations
  • 3.5.1.Complementarity of fatigue and damage tolerance
  • 3.5.2.Safety coefficients to understand curve a = f(N)
  • 3.5.3.Acquisition of the material parameters
  • 3.5.4.Negative parameter: corrosion
  • "corrosion fatigue"
  • 3.6.Application to the residual strength of thin sheets
  • 3.6.1.Planar panels: Feddersen diagram
  • 3.6.2.Case of stiffened panels
  • 3.7.Propagation of cracks subjected to random loading in the aeronautic industry
  • 3.7.1.Modeling of the interactions of loading cycles
  • 3.7.2.Comparison of predictions with experimental results
  • 3.7.3.Rainflow treatment of random loadings
  • 3.8.Conclusion
  • 3.8.1.Organization of the evolution of "damage tolerance"
  • 3.8.2.Structural maintenance program
  • 3.8.3.Inspection of structures being used
  • 3.9.Damage tolerance within the gigacyclic domain
  • 3.9.1.Observations on crack propagation
  • 3.9.2.Propagation of a fish-eye with regards to damage tolerance
  • 3.9.3.Example of a turbine disk subjected to vibration
  • 3.10.Bibliography
  • ch. 4 Defect Influence on the Fatigue Behavior of Metallic Materials / Gilles Baudry
  • 4.1.Introduction
  • 4.2.Some facts
  • 4.2.1.Failure observation
  • 4.2.2.Endurance limit level
  • 4.2.3.Influence of the rolling reduction ratio and the effect of rolling direction
  • 4.2.4.Low cycle fatigue: SN curves
  • 4.2.5.Wohler curve: existence of an endurance limit
  • 4.2.6.Summary
  • 4.3.Approaches
  • 4.3.1.First models
  • 4.3.2.Kitagawa diagram
  • 4.3.3.Murakami model
  • 4.4.A few examples
  • 4.4.1.Medium-loaded components: example of as-forged parts: connecting rods
  • effect of the forging skin
  • 4.4.2.High-loaded components: relative importance of cleanliness and surface state
  • example of the valve spring
  • 4.4.3.High-loaded components: Bearings-Endurance cleanliness relationship
  • 4.5.Prospects
  • 4.5.1.Estimation of lifetimes and their dispersions
  • 4.5.2.Fiber orientation
  • 4.5.3.Prestressing
  • 4.5.4.Corrosion
  • 4.5.5.Complex loadings: spectra/over-loadings/multiaxial loadings
  • 4.5.6.Gigacycle fatigue
  • 4.6.Conclusion
  • 4.7.Bibliography
  • ch. 5 Fretting Fatigue: Modeling and Applications / Trevor Lindley
  • 5.1.Introduction
  • 5.2.Experimental methods
  • 5.2.1.Fatigue specimens and contact pads
  • 5.2.2.Fatigue S-N data with and without fretting
  • 5.2.3.Frictional force measurement
  • 5.2.4.Metallography and fractography
  • 5.2.5.Mechanisms in fretting fatigue
  • 5.3.Fretting fatigue analysis
  • 5.3.1.The S-N approach
  • 5.3.2.Fretting modeling
  • 5.3.3.Two-body contact
  • 5.3.4.Fatigue crack initiation
  • 5.3.5.Analysis of cracks: the fracture mechanics approach
  • 5.3.6.Propagation
  • 5.4.Applications under fretting conditions
  • 5.4.1.Metallic material: partial slip regime
  • 5.4.2.Epoxy polymers: development of cracks under a total slip regime
  • 5.5.Palliatives to combat fretting fatigue
  • 5.6.Conclusions
  • 5.7.Bibliography
  • ch. 6 Contact Fatigue / Ky Dang Van
  • 6.1.Introduction
  • 6.2.Classification of the main types of contact damage
  • 6.2.1.Background
  • 6.2.2.Damage induced by rolling contacts with or without sliding effect
  • 6.2.3.Fretting
  • 6.3.A few results on contact mechanics
  • 6.3.1.Hertz solution
  • 6.3.2.Case of contact with friction under total sliding conditions
  • 6.3.3.Case of contact with partial sliding
  • 6.3.4.Elastic contact between two solids of different elastic modules
  • 6.3.5.3D elastic contact
  • 6.4.Elastic limit
  • 6.5.Elastoplastic contact
  • 6.5.1.Stationary methods
  • 6.5.2.Direct cyclic method
  • 6.6.Application to modeling of a few contact fatigue issues
  • 6.6.1.General methodology
  • 6.6.2.Initiation of fatigue cracks in rails
  • 6.6.3.Propagation of initiated cracks
  • 6.6.4.Application to fretting fatigue
  • 6.7.Conclusion
  • 6.8.Bibliography
  • ch. 7 Thermal Fatigue / Luc Remy
  • 7.1.Introduction
  • 7.2.Characterization tests
  • 7.2.1.Cyclic mechanical behavior
  • 7.2.2.Damage
  • 7.3.Constitutive and damage models at variable temperatures
  • 7.3.1.Constitutive laws
  • 7.3.2.Damage process modeling based on fatigue conditions
  • 7.3.3.Modeling the damage process in complex cases: towards considering interactions with creep and oxidation phenomena
  • 7.4.Applications
  • 7.4.1.Exhaust manifolds in automotive industry
  • 7.4.2.Cylinder heads made from aluminum alloys in the automotive industry
  • 7.4.3.Brake disks in the rail and automotive industries
  • 7.4.4.Nuclear industry pipes
  • 7.4.5.Simple structures simulating turbine blades
  • 7.5.Conclusion
  • 7.6.Bibliography.