Computational methods for electromagnetic phenomena : electrostatics in solvation, scattering, and electron transport / / Wei Cai.

"A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, micro-to-optical waves, photonics, nanoelectronics and plasmas. The state-of-the-art numerical methods described include: Statistical fluct...

Full description

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Year of Publication:2013
Language:English
Online Access:
Physical Description:xviii, 444 p. :; ill.
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Machine generated contents note: Part I. Electrostatics in Solvations: 1. Dielectric constant and fluctuation formulae for molecular dynamics; 2. Poisson-Boltzmann electrostatics and analytical approximations; 3. Numerical methods for Poisson-Boltzmann equations; 4. Fast algorithms for long-range interactions; Part II. Electromagnetic Scattering: 5. Maxwell equations, potentials, and physical/artificial boundary conditions; 6. Dyadic Green's functions in layered media; 7. High order methods for surface electromagnetic integral equations; 8. High order hierarchical Nedelec edge elements; 9. Time domain methods - discontinuous Galerkin method and Yee scheme; 10. Computing scattering in periodic structures and surface plasmons; 11. Solving Schrodinger equations in waveguides and quantum dots; Part III. Electron Transport: 12. Quantum electron transport in semiconductors; 13. Non-equilibrium Green's function (NEGF) methods for transport; 14. Numerical methods for Wigner quantum transport; 15. Hydrodynamics electron transport and finite difference methods; 16. Transport models in plasma media and numerical methods.