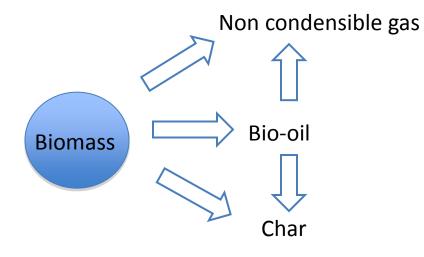


Thermal Conversion Processes of Agroindustrial Wastes

3rd FOREBIOM Workshop Gözde Duman⁽¹⁾, Jale Yanik⁽²⁾


 ⁽¹⁾Faculty of Science, Department of Chemistry, Izmir Institute of Technology, 35430 Urla, Izmir, Turkey
⁽²⁾Faculty of Science, Department of Chemistry, Ege University, 35100 Bornova, Izmir, Turkey

Concept of Presentation

✓ Slow Pyrolysis of Agricultural Biomasses

✓ Comparison of Fast and Slow Pyrolysis of Biomass

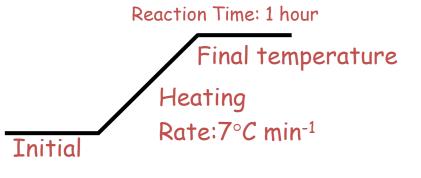
✓ Steam Reforming of Bio-oil

	Conditions	yield, %		
		liquid	Char	Gas
Carbonisation	low temperature ,long residence time	30	35	35
Gasification	high temperature ,long residence time	5	10	85
Fast pyrolysis	moderate temperature, short residence time	75	12	13

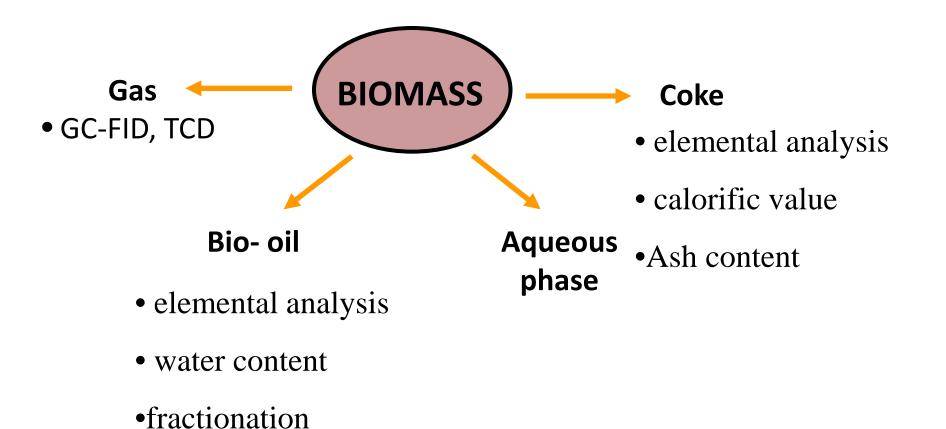
WHAT IS BIO-OIL?

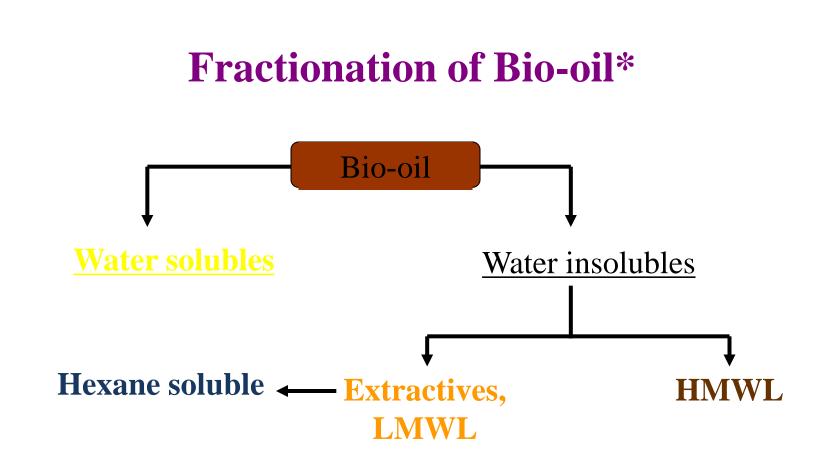
- Bio-oil consists of many oxygenated organic chemicals and is mostly water miscible.
- dark brown liquid, combustible
- heating value ~ 17 MJ/kg, pH ~ 2.5
- pungent odour
- viscosity increases with time
- Comprised of numerous suspended chemical compounds (100 or more)
- It can be stored and transported.
- It can be used as chemical feedstock.

Gas (COx, H₂, light hydrocarbons)

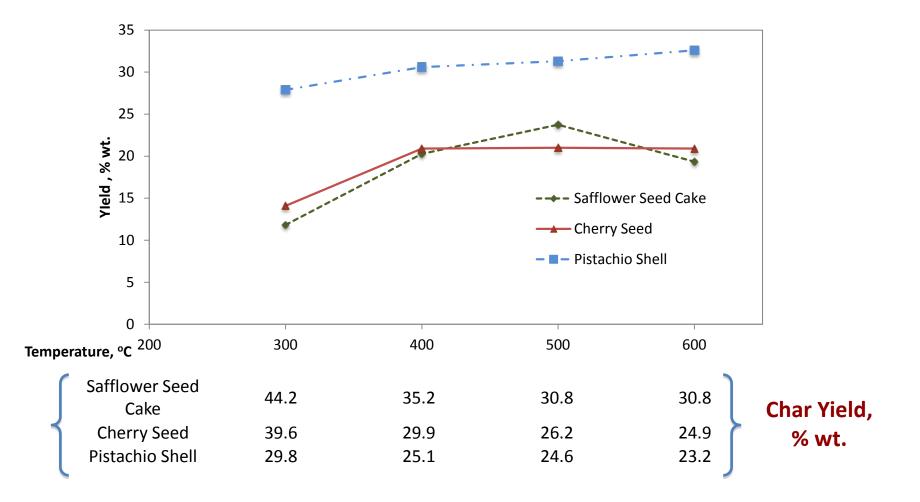

• can be used to heat pyrolysis reactor

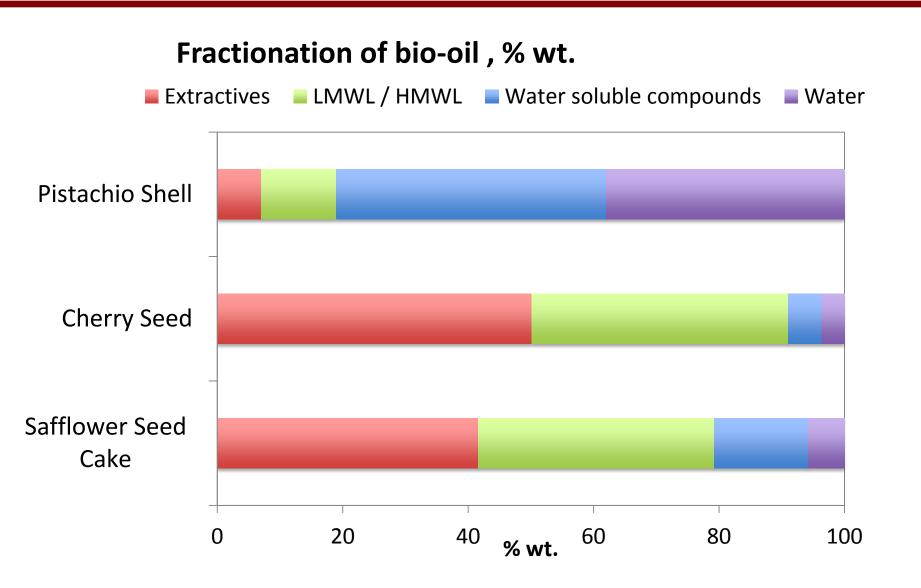
Char


- Process heat
- Activated carbon
- Soil amendment

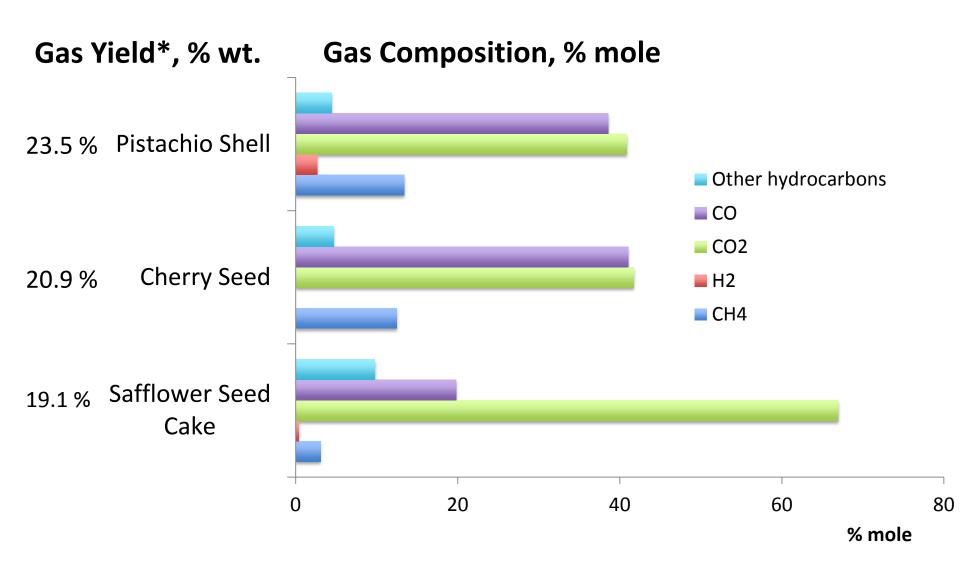

E<u>xperiments</u>

Atmosphere: N₂ Flow Rate: 25 cm³min⁻¹ Sample Amount: 100 g


*K. Sipila, E. Kuoppala, L. Fagernas, A. Oasmaa, Biomass Bioenergy 14 (1998) 103–113.


<u>Results</u>

Properties of Biomasses


	Safflower seed cake	Cherry Seed	Pistachio Shell	
Proximate analysis (w	t%)			
Moisture	6.9	5.5	7.0	
Ash	3.8	1.2	0.9	
Ultimate analysis (dry	wt%)			
С	52.5	52.5	42.4	
Н	6.1	7.6	5.6	
N	2.6	4.5	0.1	
S	0.2	0.1	-	
Component analysis (dry wt%)			
Cellulose	38.1	30.9	54.0	
Lignin	12.3	29.1	25.3	
Hemicellulose	39.5	28.6	20.1	
Extractives	6.3	10.3	0.7	

Bio-oil yield, % wt.

*Obtained from 500 °C

*Calculated from difference

Fuel Characteristic of Bio-oil

	Safflower seed cake Cherry Seed		Pistachio Shell	
Water Content, % wt.	5.8	5.6	38.4	
Ultimate analysis (dry w	t%)			
С	62.7	67.2	36.6	
0	25.8	21.9	53.3	
н	7.7	8.5	7.2	
Ν	3.7	2.5	2.8	
S	0.1	-	0.1	
Calorific value, MJ/kg	28.3	32.5	13.6	

Properties of chars

	Pistachio Shell	Cherry Seed	Safflower Seed Cake				
Elementel analysis, %wt.							
С	82.4	77.8	69.5				
н	3.1	3.0	2.7				
Ν	0.2	1.9	3.9				
S	0.1	-	-				
0	14.2	17.3	13.3				
Ash content	0.6	3.4	10.6				
HHV (MJkg-1)	29.7	31.1	25.8				

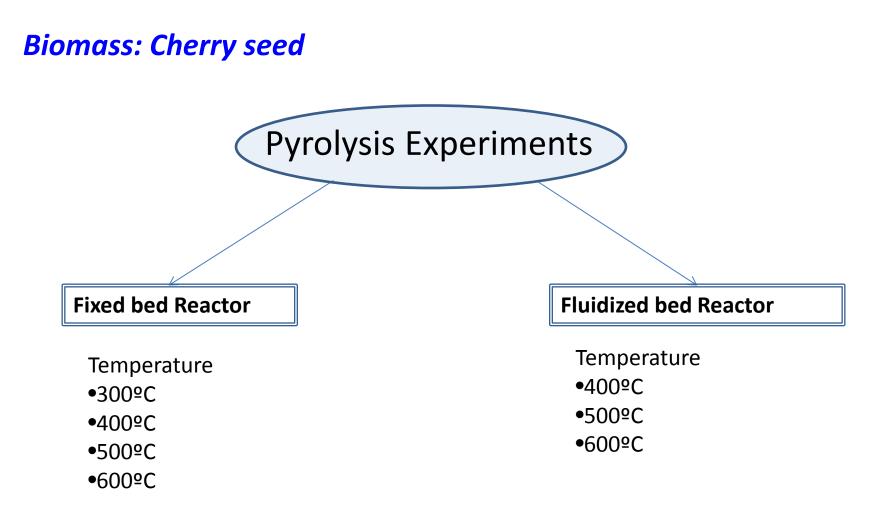
- Cherry seed is feasible biomass for producing bio oil in terms of fuel characteristic.
- Although pistachio shell gave the highest yield of bio-oil, it had a low fuel quality relating to its high water content.
- Bio-oil from pistachio shell can be used as a source of chemicals.

Antifungal activity of biooil derived Pistachio shell

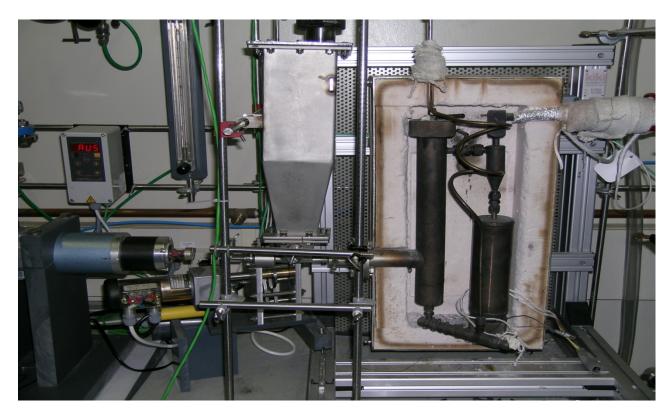
Inhibition, %

•Aspergillus niger TEM \rightarrow a saprophytic fungus 17.4-65.2 •Trichoderma viridae TFM \rightarrow a phytopathogenic fungus 21.7-69.5 Coriolus versicolor ATCC 200801 \rightarrow a white rot fungus 30.4-82.6 a dermatophytic fungus •Trichophyton rubrum \rightarrow 47.8-95.6

incubated at 27 °C for 10 days


SDA plates were prepared and then three holes were punched in periphery and a forth at the centre

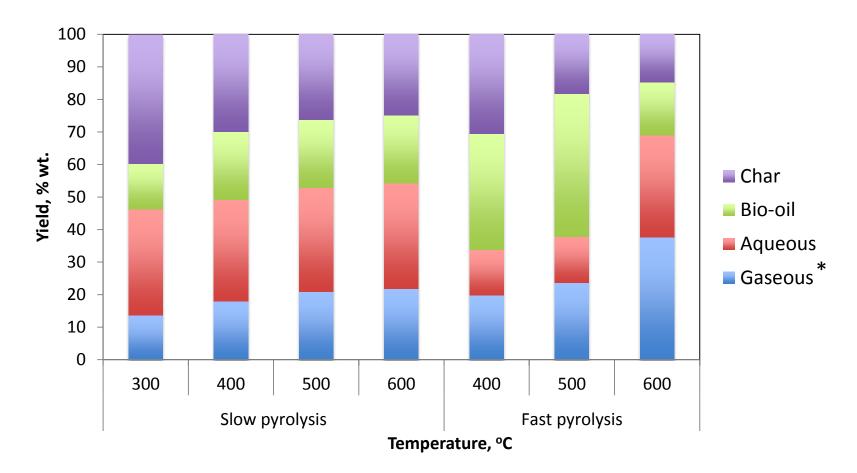
50 μl of diluted bio-oil with %1 dimethylsulfoxide


(2-10-20-30-40-50 mg bio-oil ml⁻¹)

Distance between peripheral holes and the rim of the fungal colony were measured after 10 days.

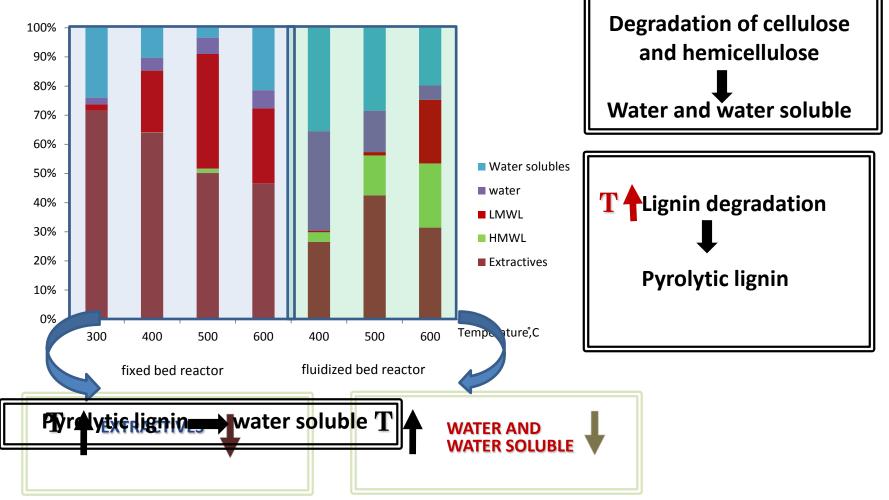
E<u>xperiments</u>

FLUIDIZED BED REACTOR(ID: 40 MM, LENGTH 300 MM)

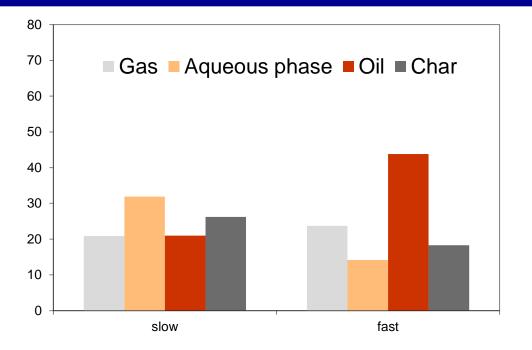


Silica sand (450 μm) with a static bed depth of 37 mm

Gas velocities: 0.25-0.30 m/s Residence time of gas: 1-2 s

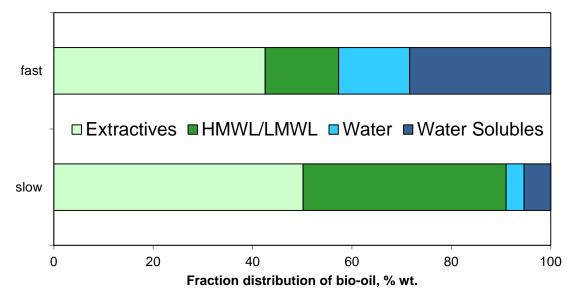

Feed: 100- 120 g

<u>Results</u>



Fuel Characteristic of Bio-oil

	Slow pyrolysis			Fast pyrolysis		
	400	500	600	400	500	600
Water content, % wt.	4.4	5.6	6.3	34.2	14.0	4.9
Ultimate analysis						
С	67.6	67.2	66.6	42.7	44.2	58.7
Н	8.6	8.5	8.7	7.4	7.4	8.2
Ν	2.7	2.5	2.8	2.5	3.3	3.0
S	-	-	-	-	-	-
0	21.07	21.9	21.9	47.4	45.1	30.0
GCV MJ kg-1	32.0	32.5	31.0	23.1	24.2	24.5



Fractionation bio-oil phase

Characteristic of Bio-oil

	slow	fast	
Water content ,%	5.60	14.27	
GCV*, MJ kg ⁻¹	32.46	24.24	
%, Ultimate Analysis	wt		
С	67.18	44.23	
н	8.48	7.42	
N	2.45	3.26	
S	0.03	0.04	
0	21.86	45.05	

	Slow Pyrolysis	Fast Pyrolysis at	
	at 500 °C	600 °C	
Compounds, mg/g bio-oil			
Hydroxymethylfural	-	0.4	
Furfural	0.1	2.1	
Methylfurfural	-	0.2	HOOC
Glycuronic acid	0.7	5.2	Но
Formic acid	0.4	1.8	ОН
Acedic acid	26.4	5.6	O U
Formaldehyde	-	1.0	
Acetaldehyde	-	18.5	ОН
Total phenols	125	103	
			H-C-C
			НН

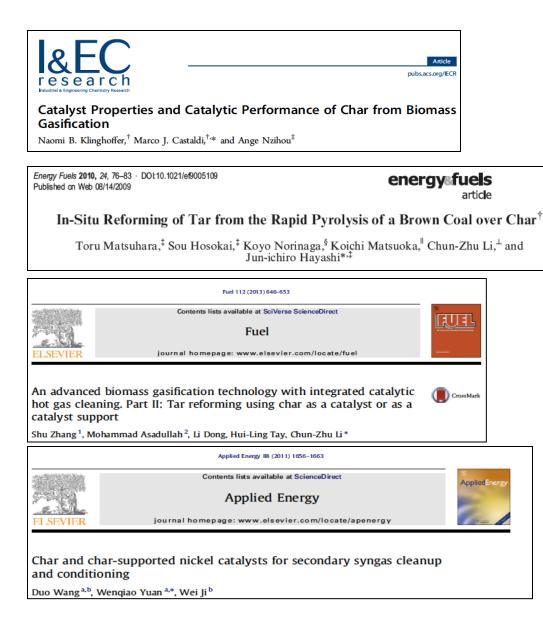
Slow pyrolysis

- High yield of char product
- Low yield of liquid product
- Low water content in oil
- Oil with higher calorific value
- Char can be used for producing activated carbon and heating

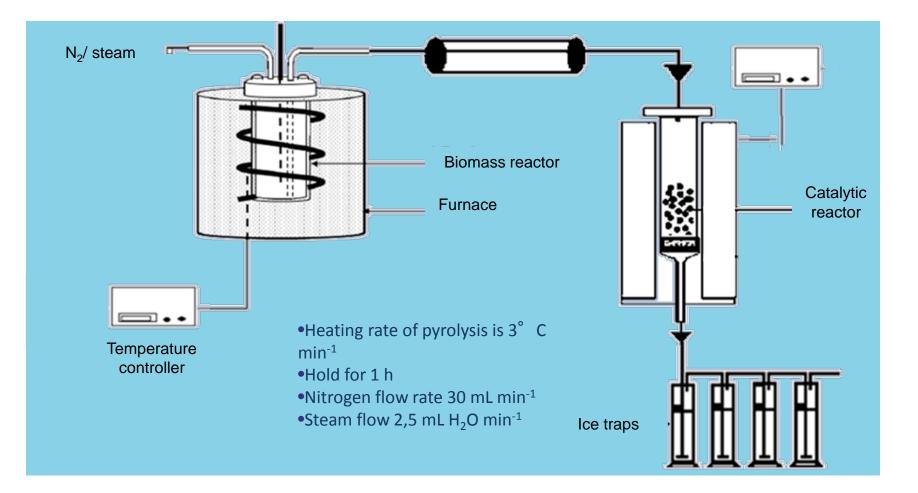
Fast pyrolysis

- Low yield of char product
- High yield of liquid product
- High water content in oil
- Oil with lower calorific value
- Char can be used only for heating

•The bio-oils from slow pyrolysis can be used as fuels for cumbustion systems in industry. But it is clear that they should be upgraded to receive an improved bio-oil composition for the direct utilization as a transport fuel.


•The bio-oil from fast pyrolysis having high water content and low calorific value can be considered as a chemical feedstock for valuable chemicals.

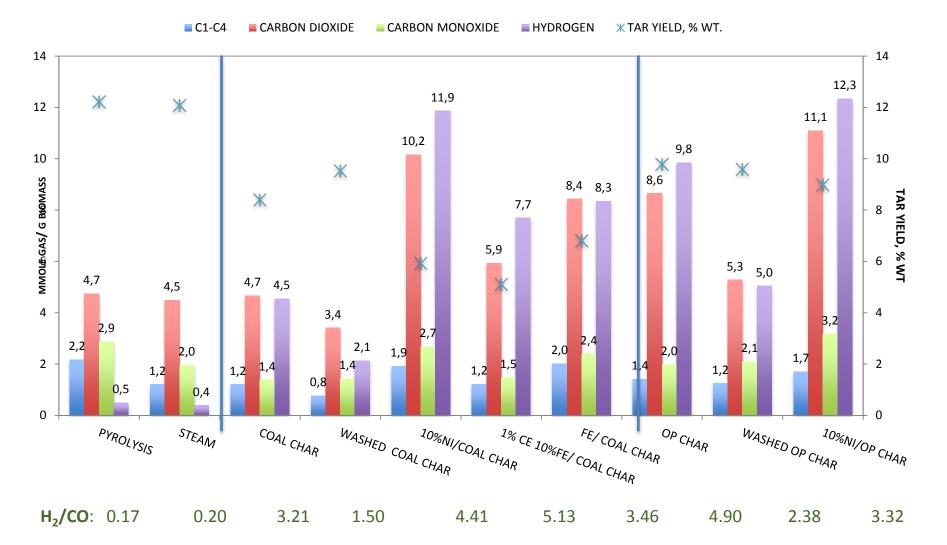
≥700 °C


Steam-Tar reforming $C_xH_y + 2xH_2O \rightarrow (2x+y)H_2 + xCO_2$ Water-gas Shift Reaction $CO+H_2O \rightarrow CO_2+H_2$

> Metal based catalyts such as Fe, Ni,Mg, Mn, Ce, Pt, etc.

Experiment

<u>Results</u>


BET surface areas of fresh and spent catalyst

	Fre	esh		Spent	\checkmark OP: Olive Pomace	
	BET surface area, m²/g	Micropor e area, m²/g	BET surface area, m²/g	Micropore area, m²/g	Weight loss, % wt.	✓ Chars were obtained at 800 ° C
OP Char	2.7	0	420.6	303.0	28.5	✓ Metal binding:
Washed OP Char	27.7	4.9	381.4	301.6	14.5	impregnation method- 700 °C calcination under
10 %Ni/90 %Char	170.8	99.3	345.5	257.3	37.8	N_2 atmosphere
Coal Char	152.3	34.8	238.8	150.6	8.5	\checkmark Ni amount as metal
Washed Coal Char	48.2	27.7	212.1	138.1	7.5	form
10 %Ni/90 %Char	180.2	138.1	182.4	130.4	7.3	

Pyrolysis Temp: 500 ° C

Biomass:Olive pomace

Catalytic temp: 700 °C

- Steam seems unlikely to assist bio-oil decomposition without catalyst.
- Ni and Fe based chars seem to increase on both total gas yield and hydrogen amount.
- Bio-oil decomposition and water gas shift reaction took place over Ni and Fe based coal char.
- Catalysts did not considerably affect decomposition of hydrocarbon gases with steam reforming.
- Chars, especially OP char decomposed into gas products during steam reforming of bio-oil.

Thank You...

e-mail: gozdeduman@iyte.edu.tr