

Pyrolysis of woody and algal biomass into liquid fuels

February 13, 2014

Dong Jin Suh Clean Energy Research Center Korea Institute of Science and Technology (KIST)

Technological Overview

Research & Development Status

Results on Fluidized-bed Pyrolysis

Results on Fixed-bed Pyrolysis

Conclusions

What is Pyrolysis?

Korea Institute of

Different Modes of Pyrolysis

Product Distribution

Advantages

- Operates at atmospheric pressure and modest temperature
- □ Yields of bio-oil can exceed 70 wt-%
- Can use any type of biomass

Disadvantages

- High oxygen and water content of pyrolysis liquids makes them inferior to conventional hydrocarbon fuels
- Phase-separation and polymerization of the liquids and corrosion of containers make storage of these liquids difficult

Fluidized bed reactors

- Bubbling fluidized-bed reactor
- Circulating fluidized-beds/transport reactor

Non-fluidized bed reactors

- Rotating cone pyrolyzer
- Ablative pyrolyzer
- Entrained flow reactor
- Vacuum pyrolyzer
- Auger pyrolyzer

Comparison of Various Reactors

Reactor	Status	Bio-oil wt%	Comp- lexity	Feed size	Inert gas need	Specific size	Scale up
BFB	Demo	75	Medium	Small	High	Medium	Easy
CFB	Pilot	75	High	Medium	High	Large	Easy
Entrained	None	65	High	Small	High	Large	Easy
Rotating cone	Pilot	65	High	V Small	Low	Small	hard
Ablative	Lab	75	High	Large	Low	Small	Hard
Auger	Lab	65	Low	Small	Low	Medium	Easy
Vacuum	Demo	60	High	Large	Low	Large	Hard
Lab: 1-20 kg/h Pilot: 20-200 kg/h Demo: 200-2000 kg/h							

Adapted from PYNE IEA Bioenergy htto://www.pyne.co.uk

Korea Institute of

Comparison of Various Reactors

Adapted from PYNE IEA Bioenergy http://www.pyne.co.uk

Kc

Korea Instit

Bio-oil

Physical property	Typical value	
Moisture content pH Specific gravity Elemental analysis C H O N HHV as produced Viscosity (40°C, and 25% water)	25% 2.5 1.20 56% 6% 38% 0-0.1% 17 MJ/kg 40-100 cp	
Solids (char) Vacuum distillation residue	0.1%	

Characteristics

Liquid fuel; a dark brown, free-flowing liquid An acrid smoky smell due to the low molecular weight aldehydes and acids Ready substitution for conventional fuels in many stationary applications such as boilers, engine, turbines Heating value of 17 MJ/kg at 25% water, is about 40% that of fuel oil diesel Does not mix with hydrocarbon fuels Not as stable as fossil fuels Quality needs definition for each application

Byproducts

Gas (CO, H₂, light hydrocarbons)

Can be used to heat pyrolysis reactor

Char: several potential applications

- Process heat
- Activated carbon
- Soil amendment

Bio-oil Upgrading

Physical Upgrading

- Filtration
- Emulsions

Chemical and Catalytic Upgrading

- Hydrotreating
- Zeolite cracking
- Gasification to syngas

Applications of Bio-oil

- □ Energy Carrier
- Combustion
- Cofiring
- Engines and Turbines
- Chemicals
- Biorefinery

Technological Overview

Research & Development Status

Results on Fluidized-bed Pyrolysis

Results on Fixed-bed Pyrolysis

Conclusions

Industrial Plants

Reactor	Industry	Country	Units built	Max size, kg/h
BFB	Agritherm Biomass Engineering Ltd Dynamotive RTI	Canada UK Canada Canada	2 1 4 5	200 200 8000 20
CFB	Ensyn Metso/UPM	Canada Finland	8 1	4000 400
Rotating cone	BTG	Netherlands	4	2000
Ablative	Ру Тес	Germany	2	250
Auger	Abritech Lurgi LR Renewable Oil Intl	Canada Germany USA	4 1 4	2083 500 200
Vacuum	Pyrovac	Canada	1	3500
Moving bed and Fixed bed	Anhui Yineng Bio-energy Ltd	China	3	600

Research Systems (>10 kg/h)

Reactor	Industry/Institute/University	Country	Max size, kg/h
BFB	Guangzhou Inst. Ener. Conv. NREL Texas A&M U. TNO U. Campinas U. of Science and Technology	China USA USA Netherlands Brazil China	10 10 42 10 100 650
CFB	VTT	Finland	20
Rotating cone	BTG	Netherlands	10
Ablative	Aston U. Inst. of Eng. Thermophysics	UK Ukraine	20 15
Auger	KIT (FZK) Texas A&M U.	Germany USA	500 30
Integral Catalytic Pyrolysis	TNO	Netherlands	30
Ceramic ball downflow Shandong U. of Technology		China	110
Microwave	U. Minnesota	Minnesota USA	

Korea Institute of Science and Technology

Research and Development

Catalytic Pyrolysis (BFCC) & Hydrotreating (USA) Company & Location: KiOR Inc., Columbus, Mississippi Capacity: 13 million gal cellulosic fuel per year (500 t/d biomass) Current yield 30 gal/t from 250-300 t/d (920,000 gal in 2013) □ Fast Pyrolysis combined with CHP, Nov. 2013 (Finland) Fortum Company & Location: Fortum Corp., Joensuu Capacity: 50,000 tons bio-oil per year (300,000-450,000 solid m³/y) **RTP[™] Technology since 1989 (Canada)** Company and Location: **Ensyn**, Renfrew, Ontario (150 t/d biomass) Capacity: >37 million gal for 5 commercial plants (>100 t/d biomass) The world's leader in developing fluidized bed pyrolysis (Canada) Company: **Dynamotive** Energy Systems (Bankrupted ?) Dynan 130 t/d bio-oil at West Lorne (2005), 200 t/d bio-oil at Guelph (2007) BINGO (Biomass INto GasOil) : 2 stage upgrading **BTG's Rotating Cone Pyrolysis (Netherlands)** btg Company: **Biomass Technology Group (BTG)**, Enschede biomass technology g 1st comm. plant in Malaysia: 2 t/h, Palm EFB (started in 2005, now closed) EMPYRO project: installed in Hengelo, the Netherlands □ Integrated Hydropyrolysis and Hydroconversion (IH²) (USA) **gti**. Company: Gas Technology Institute (GTI), Des Plains, Illinois, USA Capacity: 50 kg/d biomass (2011) Combination of two catalytic processes at 100-500 psi with CRI catalysts

Bubbling Fluidized-bed Pyrolysis Reactor in Korea

□ Korea's 1st pilot plant for producing bio-oil (2012)

Company & Location: Daekyung ESCO Co., LTD, ., Goesan, Chungbuk, Korea Capacity: 1 kg/h Biomass (Lab), 2 t/d biomass (Pilot) Feedstock: Oil Palm EFB (Empty Fruit Bunch) obtained from Malaysia Developed with cold-bed and hot-bed experiments

Technological Overview

Research & Development Status

Results on Fluidized-bed Pyrolysis

Results on Fixed-bed Pyrolysis

Conclusions

Biomass Properties

Property		Pine sawdust	Kelp
Physical	Bulk density (g/cm ³)	0.19	0.57
property	Heating value (MJ/kg)	17.3	12.7
Proximate	Water	11.0	6.1
analysis	Volatile	75.6	71.0
(wt.%)	Ash	13.5	22.9
Elemental analysis (wt.%)	C H O N S	47.3 6.2 44.0 0.10 -	35.2 5.5 40.5 1.4 0.5
Inorganic	K	0.065	6.1
elements	Ca	0.10	0.61
(wt.%)	Na	0.031	2.2

Thermogravimetric Analysis

Major decomposition temperature range: 200-400°C

Fluidized-bed Fast Pyrolysis System

Effect of Operating Variables

Variable	Range	Pine sawdust	Kelp
Temperature (°C)	400-500 <mark>425</mark>	60 50 40 50 50 50 50 50 50 50 50 50 5	50 40 50 40 50 40 50 40 50 50 50 50 40 50 50 50 50 50 50 50 50 50 5
U ₀ /U _{mf}	8-22 12, 18	$\begin{bmatrix} 60 \\ 50 \\ 6 \\ 9 \end{bmatrix}$	$ \begin{array}{c} 50\\ 40\\ 9\\ 30\\ 9\\ 9\\ 10\\ 12\\ 15\\ 18\\ 21\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
Feeding rate (g/h)	100-700 <mark>300, 600</mark>	60 60 60 60 60 60 60 60 60 60	50 40 50 10 10 400 500 500 500 500 500 500 50

Kores Institute of Science and Technology

Bio-Oil Analysis

Property		Bio-oil from Pine	Bio-oil from Kelp	Fossil oil
Physical property	Water content (wt.%) Heating value (MJ/kg)	36.4 14.1	70.7 8.7	0.1 40.6
Elemental analysis (wt.%)	C H O N S	31.3 8.2 56.2 <0.3 <0.3	16.2 10.2 63.9 <0.3 <0.3	86.0 13.6 - 0.2 <0.18

Bio-char from Kelp

Severe agglomeration due to electrostatic force and secondary reactions

raise problems in continuous operations

Bio-Oil Compositional Analysis

Catalytic Upgrading of Bio-Oil

Process Flow Diagram

Technological Overview

Research & Development Status

Results on Fluidized-bed Pyrolysis

Results on Fixed-bed Pyrolysis

Conclusions

Fixed-bed Pyrolysis and Fractionation System

Fixed-bed Pyrolysis

Ice bath Liquid nitrogen bath

Vacuum Distillation

Results of Fixed-bed Pyrolysis of Kelp

Variable	Range	Effect of Variables	Results	
Temperature (°C)	430-530 <mark>425</mark>	60 50 40 90 30 20 60 Bio-oil Bio-char Gas	Product Yield (wt.%) Bio-oil Bio-char Gas	47.0 33.2 19.8
		10 410 430 450 470 490 510 530 55 Temperature (Č)	Proximate analysis (wt.%) of bio-char	
Retention 4-10 time		100 80 80 90 80 Bio-oil Bio-char	Water Volatile Fixed carbon Ash	1.90 29.75 7.46 60.89
(min)		Gas 0 2 4 6 8 10 1 Time (min)	Elemental analysis (wt/%) of bio-char*	
Carrier gas flow rate (L/min)	0.4-1.2 <mark>0.6</mark>	60 50 40 Bio-oil Bio-char Gas	C H O N S	47.57 2.35 46.01 1.75 2.32
		10	HHV (MJ/kg)	13.54
			*ash-free basis	

Korea Institute of Science and Technology

Fractionation of Crude Bio-oil

Vacuum distillation at 40 mmHg			Fractior	Residue		
		Fraction I	Non-aqueous	Aqueous	(solid coke)	Loss
Distillation temp.	(°C)	<40	40-160		>160	
Viold (wt 0()		E0 2	24.7			1 6
Yield (wt.%)		58.3	5.9	18.8	15.4	1.6
Water cont.(wt.%)		96.2	2.0	25.9	-	
Elemental Ratio	H/C O/C		1.58 0.12	1.65 0.40	0.96 0.22	
Appearance		Bright yellow	Dark brown	Orange	Black	
Appearance					Closer to for aroma rather tha	the value atics an for alk

Hydrodeoxygenation (HDO)

Hydrodeoxygenation (HDO) System

Down-flow Trickle-bed Reactor System

HDO Products

Property		HDO product	Gasoline	Diesel
Water content (wt.%) Density @15°C (kg/m ³) pH		1.23 955.5 5.4	0.0035 700.4 -	0.0042 822.8 -
Elemental analysis (wt.%)	C H O N S	75.10 9.60 8.68 3.20 0.11	82.68 15.13 2.09 0.0016 0.0006	86.58 13.41 0.01 0.0005 0.0005
HHV (MJ/kg	1)	37.54	45.80	45.96

1 kg of fractionated bio-oil

0.37 kg HDO product

Technological Overview

Research & Development Status

Results on Fluidized-bed Pyrolysis

Results on Fixed-bed Pyrolysis

Conclusions

Summary

- Woody and algal biomass can be converted into liquid fuels for transportation by pyrolysis and catalytic upgrading. However, such fuel is not still economically feasible compared with successful bio-oil applications in heat and power generation.
- Two step catalytic upgrading process can readily remove oxygen from bio-oil under relatively mild conditions.
- Non-fluidized bed reactor system can be considered for algal biomass pyrolysis. Relatively inexpensive and compact pyrolysis and upgrading system needs to be developed.

Challenges

- □ The cost of the bio-oil, which is 10% to 100% more than fossil fuel
- Availability: there are limited supplies of bio-oil for testing and development of applications
- A lack of standards for use and distributions of bio-oil. Inconsistent quality inhibits wider usage.
- □ Bio-oil is incompatible with conventional fuels
- Users are unfamiliar with this material
- Dedicated fuel handling system are needed
- Pyrolysis as a technology does not enjoy a good image

Acknowledgement

 Creative Allied Project (CAP) grant funded by the Korea Research Council of Fundamental Science and Technology (KRCF) and Korea Institute of Science and Technology (KIST)
 Financially supported by the Ministry of Oceans and Fisheries

Mr. Jae-Wook Choi (Fluidized bed pyrolysis)
Dr. Jeong-Myeong Ha (Catalytic upgrading)
Prof. Hee Chul Woo & Mr. Jae Hyung Choi (Fixed bed pyrolysis of algal biomass)

