

Mitigation of Climate Change Key Insights from IPCC AR5

Keywan Riahi

International Institute for Applied Systems Analysis riahi@iiasa.ac.at

Osterreichische Akademie der Wissenschaften Wien, 24 November 2014

IIASA, International Institute for Applied Systems Analysis

GHG emissions growth has accelerated despite reduction efforts.

Most emission growth is CO₂ from fossil fuel combustion.

About half of cumulative anthropogenic CO_2 emissions between 1750 and 2010 have occurred in the last 40 years.

There is far more carbon in the ground than emitted in any baseline scenario.

Limiting warming to 2°C involves substantial technological, economic and institutional challenges.

Without additional mitigation, GHG emissions continue to increase by a factor of about two compared to today.

7 Working Group III contribution to the IPCC Fifth Assessment Report

INTERGOVERNMENTAL PANEL ON Climate change

Without additional mitigation, global mean surface temperature is projected to increase by 3.7 to 4.8°C over the 21st century.

Stabilization of atmospheric concentrations requires moving away from the baseline - regardless of the mitigation goal.

Stabilization of atmospheric concentrations requires moving away from the baseline - regardless of the mitigation goal.

Working Group III contribution to the 10 **IPCC Fifth Assessment Report**

Baseline Range

Mitigation involves substantial upscaling of low-carbon energy.

Mitigation involves substantial upscaling of low-carbon energy.

Actions over the next 5-15 years will be critical

Before 2030

After 2030

Rate of CO, Emission Change [%/yr]

After 2030

Rate of CO, Emission Change [%/yr]

After 2030

Rate of CO, Emission Change [%/yr]

Before 2030

After 2030

Rate of CO, Emission Change [%/yr]

20

Reaching low stabilization requires rapid decarbonization of energy supply + efforts across all sectors

Mitigation requires changes throughout the economy. Efforts in one sector determine mitigation efforts in others.

BASELINES

Mitigation requires changes throughout the economy. Efforts in one sector determine mitigation efforts in others.

450 ppm CO₂eq with Carbon Dioxide Capture & Storage

Mitigation requires changes throughout the economy. Efforts in one sector determine mitigation efforts in others.

450 ppm CO₂eq without Carbon Dioxide Capture & Storage

Decarbonization of energy supply is a key requirement for stabilizing atmospheric CO_2 eq concentrations below 580 ppm.

Contribution of Low Carbon Technologies to Energy Supply (430-530 ppm CO,eq Scenarios)

Decarbonization of energy supply is a key requirement for stabilizing atmospheric CO_2 eq concentrations below 580 ppm.

Contribution of Low Carbon Technologies to Energy Supply (430-530 ppm CO, eq Scenarios)

Achieving low stabilization requires substantial investments, which can lead to co-benefits for other local or national policy objectives

Substantial reductions in emissions would require large changes in investment patterns and appropriate policies.

Average Changes in Annual Investment Flows from 2010 to 2029 (430–530 ppm CO₂eq Scenarios)

Sustainable development means overcoming several energy challenges

Energy Poverty

Energy Security

Land Use & Forests

Climate Change

5

Air Pollution

Image sources: NASA, http://www.powernewsnetwork.com/white-house-releases-plan-to-cut-oil-imports-by-13-by-2025/1798/, http://wheresmyamerica.wordpress.com/2007/08/26/i-cant-see-my-america/, http://www.americanprogress.org/issues/green/report/2009/05/14/6142/energy-poverty-101/, http://today.uconn.edu/blog/2010/12/reclaiming-water-a-green-leap-forward/, http://te.wikipedia.org/wiki/%E0%B0%A6%E0%B0%B8%E0%B1%8D%E0%B0%A4%E0%B1%8D%E0%B0%B0%E0%B0%82:Forest_Osaka_Japan.jpg

Mitigation can result in large co-benefits for human health and other societal goals.

Mitigation can help to reduce energy security concerns

Impact of Climate Policy on Energy Security

Integration across climate and other objectives is key for costeffectivly addressing environmental challenges

(F)

UNEP

APCC-AAR14: Austria in the context of global climate change

Austrian Panel on Climate Change (APCC) Austrian Assessment Report 2014 (AAR14)

powered

800

Change in average surface temperature in case of high emissions (1986–2005 to 2081–2100)

Thank you!

riahi@iiasa.ac.at

IIASA-IPCC database: https://secure.iiasa.ac.at/webapps/ene/AR5DB