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Travel Time Tomography (Transmission)

Global Seismology

Inverse Problem: Determine inner structure of Earth by measuring travel time of

seismic waves.
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Tsunami of 1960 Chilean Earthquake

Black represents the largest waves, decreasing in height through purple, dark red,

orange and on down to yellow. In 1960 a tongue of massive waves spread across

the Pacific, with big ones throughout the region.
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Human Body Seismology

ULTRASOUND TRANSMISSION TOMOGRAPHY(UTT)

T =
∫
γ

1

c(x)
ds = Travel Time (Time of Flight).
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REFLECTION TOMOGRAPHY

Scattering

Points in medium

Obstacle
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REFLECTION TOMOGRAPHY

Oil Exploration Ultrasound
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TRAVELTIME TOMOGRAPHY (Transmission)

Motivation:Determine inner structure of Earth by measuring travel

times of seismic waves

Herglotz (1905), Wiechert-Zoeppritz (1907)

Sound speed c(r), r = |x|

d
dr

(
r

c(r)

)
> 0

T =
∫
γ

1
c(r). What are the curves of propagation γ?
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Ray Theory of Light: Fermat’s principle

Fermat’s principle. Light takes the shortest optical path from A to B (solid

line) which is not a straight line (dotted line) in general. The optical path length

is measured in terms of the refractive index n integrated along the trajectory.

The greylevel of the background indicates the refractive index; darker tones

correspond to higher refractive indices.
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The curves are geodesics of a metric.

ds2 = 1
c2(r)

dx2

More generally ds2 = 1
c2(x)

dx2

Velocity v(x, ξ) = c(x), |ξ| = 1 (isotropic)

Anisotropic case

ds2 =
n∑

i,j=1

gij(x)dxidxj
g = (gij) is a positive defi-

nite symmetric matrix

Velocity v(x, ξ) =
√∑n

i,j=1 g
ij(x)ξiξj, |ξ| = 1

gij = (gij)
−1

The information is encoded in the

boundary distance function
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More general set-up

(M, g) a Riemannian manifold with boundary (compact) g = (gij)

x, y ∈ ∂M

dg(x, y) = inf
σ(0)=x
σ(1)=y

L(σ)

L(σ) = length of curve σ

L(σ) =
∫ 1
0

√∑n
i,j=1 gij(σ(t))dσidt

dσj
dt dt

Inverse problem

Determine g knowing dg(x, y) x, y ∈ ∂M
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ANOTHER MOTIVATION (STRING THEORY)

HOLOGRAPHY

Inverse problem: Can we recover (M, g) (bulk) from

boundary distance function ?

M. Parrati and R. Rabadan, Boundary rigidity and holography, JHEP

01 (2004) 034

B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral geom-

etry and holography, JHEP 10 (2015) 175
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dg ⇒ g ?

(Boundary rigidity problem)

Answer NO ψ : M →M diffeomorphism

ψ
∣∣∣
∂M

= Identity

dψ∗g = dg

ψ∗g =
(
Dψ ◦ g ◦ (Dψ)T

)
◦ ψ

Lg(σ) =
∫ 1
0

√∑n
i,j=1 gij(σ(t))dσidt

dσj
dt dt

σ̃ = ψ ◦ σ Lψ∗g(σ̃) = Lg(σ)
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dψ∗g = dg

Only obstruction to determining g from dg ? No

dg(x0, ∂M) > supx,y∈∂M dg(x, y)

Can change metric

near SP
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Def (M, g) is boundary rigid if (M, g̃) satisfies dg̃ = dg. Then

∃ψ : M →M diffeomorphism, ψ
∣∣∣
∂M

= Identity, so that

g̃ = ψ∗g

Need an a-priori condition for (M, g) to be boundary rigid.

One such condition is that (M, g) is simple
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DEF (M, g) is simple if given two points x, y ∈ ∂M , ∃! geodesic

joining x and y and ∂M is strictly convex

CONJECTURE

(M, g) is simple then (M, g) is boundary rigid ,that is dg

determines g up to the natural obstruction. (dψ∗g = dg)

( Conjecture posed by R. Michel, 1981 )
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Metrics Satisfying the Herglotz condition

Francois Monard: SIAM J. Imaging Sciences (2014)
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Results in the Isotropic Case

dβg = dg =⇒ β = 1?

Theorem (Mukhometov, Mukhometov-Romanov, Beylkin,

Gerver-Nadirashvili, ... )

YES for simple manifolds. Also stability.

The sound speed case corresponds to g = 1
c2
e with e the identity.
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Results (M, g) simple

• R. Michel (1981) Compact subdomains of R2 or H2 or the open

round hemisphere

• Gromov (1983) Compact subdomains of Rn

• Besson-Courtois-Gallot (1995) Compact subdomains of negatively

curved symmetric spaces

(All examples above have constant curvature)

•


Stefanov-U (1998)
Lassas-Sharafutdinov-U
(2003)
Burago-Ivanov (2010)

 dg = dg0 , g0 close to

Euclidean
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n = 2

• Otal and Croke (1990) Kg < 0

THEOREM(Pestov-U, 2005)

Two dimensional Riemannian manifolds with boundary which are

simple are boundary rigid (dg ⇒ g up to natural obstruction)
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Theorem (n ≥ 3) (Stefanov-U, 2005)

(M, gi) simple i = 1,2, gi close to g0 ∈ L where L is a generic set

of simple metrics in Ck(M). Then

dg1 = dg2 ⇒ ∃ψ : M →M diffeomorphism,

ψ
∣∣∣
∂M

= Identity, so that g1 = ψ∗g2

Also Stability.

Remark

If M is an open set of Rn, L contains all simple and real-analytic

metrics in Ck(M).
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Geodesics in Phase Space

g =
(
gij(x)

)
symmetric, positive definite

Hamiltonian is given by

Hg(x, ξ) =
1

2

( n∑
i,j=1

gij(x)ξiξj − 1
)

g−1 =
(
gij(x)

)

Xg(s,X0) =
(
xg(s,X0), ξg(s,X0)

)
be bicharacteristics ,

sol. of
dx

ds
=
∂Hg

∂ξ
,

dξ

ds
= −

∂Hg

∂x

x(0) = x0, ξ(0) = ξ0, X0 = (x0, ξ0), where ξ0 ∈ Sn−1
g (x0)

Sn−1
g (x) =

{
ξ ∈ Rn; Hg(x, ξ) = 0

}
.

Geodesics Projections in x: x(s) .
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Scattering Relation

dg only measures first arrival times of waves.

We need to look at behavior of all geodesics

‖ξ‖g = ‖η‖g = 1

αg(x, ξ) = (y, η), αg is SCATTERING RELATION

If we know direction and point of entrance of geodesic then we

know its direction and point of exit.
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Scattering relation follows all geodesics.

Conjecture Assume (M,g) non-trapping. Then αg determines g

up to natural obstruction.

(Pestov-U, 2005) n = 2 Connection between αg and Λg (Dirichlet-

to-Neumann map)

(M, g) simple then dg ⇔ αg
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Lens Rigidity

Define the scattering relation αg and the length (travel time) func-

tion `:

αg : (x, ξ)→ (y, η), `(x, ξ)→ [0,∞].

Diffeomorphisms preserving ∂M pointwise do not change L, `!

Lens rigidity: Do αg, ` determine g uniquely, up to isometry?
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Lens rigidity: Do αg, ` determine g uniquely, up to isometry?

No, There are counterexamples for trapping manifolds (Croke-Kleiner).

The lens rigidity problem and the boundary rigidity one are equiv-

alent for simple metrics! This is also true locally, near a point p

where ∂M is strictly convex.

For non-simple metrics (caustics and/or non-convex boundary), lens

rigidity is the right problem to study.

Some results: local generic rigidity near a class of non-simple met-

rics (Stefanov-U, 2009), lens rigidity for real-analytic metrics satis-

fying a mild condition (Vargo, 2010), the torus is lens rigid (Croke

2014), stability estimates for a class of non-simple metrics (Bao-

Zhang 2014), Stefanov-U-Vasy, 2013 (foliation condition, confor-

mal case); Guillarmou, 2015 (hyperbolic trapping), Stefanov-U-

Vasy, 2017 (foliation condition, general case).
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Theorem (C. Guillarmou 2015). Let (M, g) be a surface with strictly

convex boundary and hyperbolic trapping and no conjugate points.

Then lens data determines the metric up to a conformal factor.

Dynamical Systems and Microlocal Analysis (Faure-Sjöstrand, Dyatlov-

Zworski, Dyatlov-Guillarmou)

(Picture by F. Monard)
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Partial Data: General Case

Boundary Rigidity with partial data: Does dg, known on ∂M×∂M
near some p, determine g near p up to isometry?
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Theorem (Stefanov-U-Vasy, 2017). Let dimM ≥ 3. If ∂M is strictly

convex near p for g and g̃, and dg = dg̃ near (p, p), then g = g̃ up to

isometry near p.

Also stability and reconstruction.

The only results so far of similar nature is for real analytic metrics

(Lassas-Sharafutdinov-U, 2003). We can recover the whole jet of

the metric at ∂M and then use analytic continuation.
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Global result under the foliation condition

We could use a layer stripping argument to get deeper and deeper

in M and prove that one can determine g (up to isometry) in the

whole M .

Foliation condition: M is foliated by strictly convex hypersurfaces

if, up to a nowhere dense set, M = ∪t∈[0,T )Σt, where Σt is a smooth

family of strictly convex hypersurfaces and Σ0 = ∂M .

A more general condition: several families, starting from outside

M .
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Global result under the foliation condition

Theorem (Stefanov-U-Vasy, 2016). Let dimM ≥ 3, let g̃ = βg with

β > 0 smooth on M , let ∂M be strictly convex with respect to

both g and g̃. Assume that M can be foliated by strictly convex

hypersurfaces for g. Then if αg = αg̃, l = l̃ we have g = g̃ in M .

Examples: The foliation condition is satisfied for strictly convex

manifolds of non-negative sectional curvature, symply connected

manifolds with non-positive sectional curvature and simply con-

nected manifolds with no focal points.

Foliation condition is an analog of the Herglotz, Wieckert-Zoeppritz

condition for non radial speeds.

29



Example: Herglotz and Wiechert & Zoeppritz showed that one can

determine a radial speed c(r) in the ball B(0,1) satisfying

d

dr

r

c(r)
> 0.

The uniqueness is in the class of radial speeds.

One can check directly that their condition is equivalent to the

following one: the Euclidean spheres {|x| = t}, t ≤ 1 are strictly

convex for c−2dx2 as well. Then B(0,1) satisfies the foliation con-

dition. Therefore, if c̃(x) is another speed, not necessarily radial,

with the same lens relation, equal to c on the boundary, then c = c̃.

There could be conjugate points.

Therefore, speeds satisfying the Herglotz and Wiechert & Zoeppritz

condition are conformally lens rigid.
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Global result in the general case

Theorem (Stefanov-U-Vasy, 2017). Let (M, g) be a compact n-

dimensional Riemannian manifold, n ≥ 3, with strictly convex bound-

ary so that there exists a strictly convex function f on M with

{f = 0} = ∂M . Let g̃ be another Riemannian metric on M , an

assume that ∂M is strictly convex w.r.t. g̃ as well. If g and g̃ have

the same lens relations, then there exists a diffeomorphism ψ on M

fixing ∂M pointwise such that g = ψ∗g̃.

Examples: This condition is satisfied for strictly convex manifolds of

non-negative sectional curvature, symply connected manifolds with

non-positive sectional curvature and simply connected manifolds

with no focal points.
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New Results on Boundary Rigidity

The Boundary Rigidity problem is to recover g from dg.

Corollary (New result on boundary rigidity). Strictly convex, simply

connected manifolds with no focal points are boundary rigid.

Strictly convex, simply connected manifolds with no focal points

are simple.

Question: Do simple manifolds satisfy the foliation condition?
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Metrics Satisfying the Herglotz condition

Francois Monard: SIAM J. Imaging Sciences (2014)
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Elasticity

The isotropic elastic equation is given by

(∂2
t − E)u = 0,

where u = (u1, u2, u3), and

(Eu)i = ρ−1
(
∂iλ∇ · u+

∑
j

∂jµ(∂jui + ∂iuj)
)
,

where λ > 0 and µ > 0 are the Lamé parameters and ρ > 0 is the

density.

We want to recover λ, µ and ρ from the DN map

Λf = Σjσij(u)νj,

where ν is the outer normal and σij(u) = λ∇ · uδij + µ(∂jui + ∂iuj)

is the stress tensor.
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The speed of P-waves is given by

cp =
√

(λ+ 2µ)/ρ

and the speed of S-waves is given by

cs =
√
µ/ρ.

Rachelle has shown that one can recover the boundary jets and the

coefficients inside if both speeds are simple. The proof of the later

uses the boundary rigidity results for c−2
p dx2 and c−2

s dx2 and the

inversion of the geodesic ray transform.

Unique continuation holds but the boundary control method does

not work. The local problem was open.
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Theorem (Stefanov-U-Vasy, 2017). Let Σq, q ∈ [0,1] be a strictly
convex foliation w.r.t. cp, and let Γ ⊂ ∂M be defined as Γ =
∪q∈[0,1](∂M ∩Σq).

Then cp is uniquely determined in the compact set foliated by the
foliation by knowledge of Λ on (0, T ) × Γ if T is greater than the
length of all geodesics, in the metric c−2

p dx2, in Ω̄ having the prop-
erty that each one is tangent to some Σq.

The same statement remains true for cp replaced by cs.

Ω

Γ

M0
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In particular, this solves the local problem in seismology with local
measurements. The foliation condition is satisfied when the two
speeds increase with depth, which is true for the actual cp and cs ac-
cording to the popular Preliminary Reference Earth Model (PERM).

To prove the theorem, we show that we can recover the lens re-
lations related to both speeds from Λ; and then apply the local
rigidity result for speeds. This approach implies stability and recon-
struction, as well.

Γ Γ

The shaded region is where we can recover the speed if the speed
increases with depth.
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Inversion of X-ray Transform (Radon 1917)

• If(x, θ) =
∫
f(x+ tθ)dt, |θ| = 1

• (−∆)1/2I∗If = cf, c 6= 0

• (−∆)−1/2f =
∫

f(y)

|x− y|n−1
dy

I∗I is an elliptic pseudodifferential operator of order -1.
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Inversion of X-ray Transform

(M, g) simple

If(x, ξ) =
∫ τ(x,ξ)

0
f(γ(x, t, ξ))dt

ξ ∈ SxM = {ξ ∈ TxM : |ξ| = 1}

where γ(x, t, ξ) is the geodesic starting from x in direction ξ, τ(x, ξ)

is the exit time.

Theorem (Guillemin 1975, Stefanov-U, 2004). (M, g) simple. Then

I∗I is an elliptic pseudodifferential operator of order -1.
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Idea of the proof in isotropic case

The proof is based on two main ideas.

First, we use the approach in a recent paper by U-Vasy (2012) on

the linear integral geometry problem.

Second, we convert the non-linear boundary rigidity problem to a

“pseudo-linear” one. Straightforward linearization, which works for

the problem with full data, fails here.
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First Idea: The Linear Problem

Let (M, g) be compact with smooth boundary. Linearizing g 7→ dg

in a fixed conformal class leads to the ray transform

If(x, ξ) =
∫ τ(x,ξ)

0
f(γ(t, x, ξ)) dt

where x ∈ ∂M and ξ ∈ SxM = {ξ ∈ TxM ; |ξ| = 1}.

Here γ(t, x, ξ) is the geodesic starting from point x in direction ξ,

and τ(x, ξ) is the time when γ exits M . We assume that (M, g) is

nontrapping, i.e. τ is always finite.
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First Idea: The Linear Problem

U-Vasy result: Consider the inversion of the geodesic ray transform

If(γ) =
∫
f(γ(s)) ds

known for geodesics intersecting some neighborhood of p ∈ ∂M

(where ∂M is strictly convex) “almost tangentially”. It is proven

that those integrals determine f near p uniquely. It is a Helgason

support type of theorem for non-analytic curves! This was extended

recently by H. Zhou for arbitrary curves (∂M must be strictly convex

w.r.t. them) and non-vanishing weights.
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The main idea in U-Vasy is the following:

Introduce an artificial, still strictly convex boundary near p which

cuts a small subdomain near p. Then use Melrose’s scattering calcu-

lus to show that the I, composed with a suitable ‘‘back-projection”

is elliptic in that calculus. Since the subdomain is small, it would

be invertible as well.
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Consider

Pf(z) := I∗χIf(z) =
∫
SzM

x−2χIf(γz,v)dv,

where χ is a smooth cutoff sketched below (angle ∼ x), and x is

the distance to the artificial boundary.
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Inversion of local geodesic transform

Pf(z) := I∗χIf(z) =
∫
SzM

x−2χIf(γz,v)dv,

Main result: P is an elliptic pseudodifferential operator in Melrose’s

scattering calculus.

There exists A such that AP = Identity +R

This is Fredholm and R has a small norm in a neighborhood of p.

Therefore invertible near p.
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Some results for inverse geodesic X-ray transform

(E. Chung - U, 2017)

• We take spherical domain and the following sound speed

c(x, y, z) = 1 + (0.3) cos
(√

(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2
)

• We test the method with the following functions

f1 = 0.01 + sin
(
2π(x+ y + z)/10

)
,

f2 = 0.01 + sin
(
2π(x+ y)/10

)
+ cos

(
2πz/20

)
,

f3 = x+ y2 + z2/2,

f4 = 1 + 6x+ 4y + 9z + sin
(
2π(x+ z)

)
+ cos

(
2πy

)
f5 = x+ ey+z/2.
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• Relative errors for using up to 4 terms in the Neumann series

relative error f1 f2 f3 f4 f5
n=0 37.1% 37.08% 37.13% 37.27% 37.25%
n=1 15.74 % 15.63% 15.81% 16.2% 16.32 %
n=2 8.92% 8.65% 9.09% 9.98% 10.28%
n=3 6.99% 6.55% 7.26% 8.61% 9.02%



• We test the method using a spherical section of the Marmousi

model

• Results
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Second Step: Reduction to Pseudolinear Problem

Identity (Stefanov-U, 1998)

X 0

Xg1
(t)

Xg2
(t)

Xg1
(s)

Vg1 V g2
g

T = dg1,

F (s) = Xg2

(
T − s,Xg1(s,X0)

)
,

F (0) = Xg2(T,X0), F (T ) = Xg1(T,X0),∫ T
0
F ′(s)ds = Xg1(T,X0)−Xg2(T,X0)

∫ T
0

∂Xg2

∂X0

(
T − s,Xg1(s,X0)

)
(Vg1 − Vg2)

∣∣∣
Xg1(s,X0)

dS

= Xg1(T,X0)−Xg2(T,X0)
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Identity (Stefanov-U, 1998)

∫ T
0

∂Xg2

∂X0

(
T − s,Xg1(s,X0)

)
(Vg1 − Vg2)

∣∣∣
Xg1(s,X0)

dS

= Xg1(T,X0)−Xg2(T,X0)

Vgj :=

(
∂Hgj

∂ξ
,−
∂Hgj

∂x

)
the Hamiltonian vector field.

Particular case:

(gk) =
1

c2k

(
δij
)
, k = 1,2

Vgk =
(
c2kξ, −

1

2
∇(c2k)|ξ|2

)
Linear in c2k!
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Reconstruction

∫ T
0

∂Xg1

∂X0

(
T − s,Xg2(s,X0)

)
×(

(c21 − c
2
2)ξ, −

1

2
∇(c21 − c

2
2)|ξ|2

)∣∣∣
Xg2(s,X0)

dS

= Xg1(T,X0)︸ ︷︷ ︸
data

−Xg2(T,X0)

Inversion of weighted geodesic ray transform and use similar meth-

ods to U-Vasy.
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The Linear Problem: General Case

The linearization of the map g → dg leads to the question of in-

vertability of the integration of two tensors along geodesics.

Let f = fij dx
i⊗dxj be a symmetric 2-tensor in M . Define f(x, ξ) =

fij(x)ξiξj. The ray transform of f is

I2f(x, ξ) =
∫ τ(x,ξ)

0
f(ϕt(x, ξ)) dt, x ∈ ∂M, ξ ∈ SxM,

where ϕt is the geodesic flow,

ϕt(x, ξ) = (γ(t, x, ξ), γ̇(t, x, ξ)).

In coordinates

I2f(x, ξ) =
∫ τ(x,ξ)

0
fij(γ(t))γ̇i(t)γ̇j(t) dt.
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The Linear Problem: General Case

Recall the Helmholtz decomposition of F : Rn → Rn,

F = F s +∇h, ∇ · F s = 0.

Any symmetric 2-tensor f admits a solenoidal decomposition

f = fs + dh, δfs = 0, h|∂M = 0

where h is a symmetric 1-tensor, d = σ∇ is the inner derivative (σ

is symmetrization), and δ = d∗ is divergence.

By the fundamental theorem of calculus, I2(dh) = 0 if h|∂M = 0.

I2 is said to be s-injective if it is injective on solenoidal tensors.
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Local Result for Linearized Problem

Theorem (Stefanov-U-Vasy, 2014). Let f be a symmetric tensor

field of order 2. let p ∈ ∂M be a strictly convex point. Assume that

I2(f)(γ) = 0 for all geodesics γ joining points near p. Then f is

s-injective near p.

This is a Helgason type support theorem for tensor fields of order 2.

The only previous result was for real-analytic metrics (Krishnan).

After this one uses pseudolinearization again to obtain the local

boundary rigidity result.

A global boundary rigidity result is expected to be obtained in the

same way as the isotropic case assuming the foliation condition.

54



REFLECTION TRAVELTIME TOMOGRAPHY

Broken Scattering Relation

(M, g): manifold with boundary with Riemannian metric g

((x0, ξ0), (x1, ξ1), t) ∈ B
t = s1 + s2

Theorem (Kurylev-Lassas-U)

n ≥ 3. Then ∂M and the broken scattering relation B determines

(M, g) uniquely.

55



Numerical Method
(Chung-Qian-Zhao-U, IP 2011)

∫ T
0

∂Xg1

∂X0

(
T − s,Xg2(s,X0)

)
×(

(c21 − c
2
2)ξ, −

1

2
∇(c21 − c

2
2)|ξ|2

)∣∣∣
Xg2(s,X0)

dS

= Xg1(T,X0)−Xg2(T,X0)

Adaptive method

Start near ∂Ω with

c2 = 1 and iterate.
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Numerical examples

Example 1: An example with no broken geodesics,

c(x, y) = 1 + 0.3 sin(2πx) sin(2πy), c0 = 0.8.

Left: Numerical solution (using adaptive) at the 55-th iteration. Middle: Exact

solution. Right: Numerical solution (without adaptive) at the 67-th iteration.
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Example 2: A known circular obstacle enclosed by a square

domain. Geodesic either does not hit the inclusion or hits the

inclusion (broken) once.

c(x, y) = 1 + 0.2 sin(2πx) sin(πy), c0 = 0.8.

Left: Numerical solution at the 20-th iteration. The relative error is 0.094%.

Right: Exact solution.
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Example 3: A concave obstacle (known).

c(x, y) = 1 + 0.1 sin(0.5πx) sin(0.5πy), c0 = 0.8.

Left: Numerical solution at the 117-th iteration. The relative error is 2.8%.

Middle: Exact solution. Right: Absolute error.
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Example 4: Unknown obstacles and medium.

Left: The two unknown obstacles. Middle: Ray coverage of the unknown

obstacle. Right: Absolute error.
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Example 4: Unknown obstacles and medium (continues).

r = 1 + 0.6 cos(3θ) with r =
√

(x− 2)2 + (y − 2)2.

c(r) = 1 + 0.2 sin r

Left: The two unknown obstacles. Middle: Ray coverage of the unknown

obstacle. Right: Absolute error.
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Example 5: The Marmousi model.

Left: The exact solution on fine grid. Middle: The exact solution projected on

a coarse grid. Right: The numerical solution at the 16-th iteration. The

relative error is 2.24%.
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Light Observation Sets
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How can we determine the topology and metric of
the space time?

How can we determine the topology and metric of complicated

structures in space-time with a radar-like device?

Figures: Anderson institute and Greenleaf-Kurylev-Lassas-U.
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Passive measurements: We consider e.g. light or X-ray observations

or measurements of gravitational waves.

Observations from Einstein’s Cross: Four images of the same dis-

tant quasar appear due to a gravitational lens.

Artistic picture on a gravitational wave and the Virgo detector.
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Gravitational Lensing

Double Einstein Ring Conical Refraction
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Inverse problem for passive measurements

Can we determine the structure of the space-time when we observe

wavefronts produced by point sources?
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Inverse problem for passive measurements

Can we determine the structure of the space-time when we observe

wavefronts produced by point sources?
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Definitions

Let (M, g) be a Lorentzian manifold,

where the metric g is semi-definite,

ξ ∈ TxM is light-like if g(ξ, ξ) = 0, ξ 6= 0,

ξ ∈ TxM is time-like if g(ξ, ξ) < 0,

ξ ∈ TxM is causal if g(ξ, ξ) ≤ 0,

A curve µ(s) is time-like if µ̇(s) is time-like.

Example: the Minkowski metric in R4 is

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2.
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Definitions

Let (M, g) be a Lorentzian manifold,

LqM = {ξ ∈ TqM \ 0; g(ξ, ξ) = 0},
L+
q M ⊂ LqM is the future light cone,

J+(q) = {x ∈M ; x is in causal future of q},
J−(q) = {x ∈M ; x is in causal past of q},
γx,ξ(t) is a geodesic with the initial point (x, ξ).

(M, g) is globally hyperbolic if

there are no closed causal curves and the set

J−(p1) ∩ J+(p2) is compact for all p1, p2 ∈M .

Then M can be represented as M = R×N .
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More definitions

Let µ = µ([−1,1]) ⊂ M be time-like geodesics containing p− and
p+.

We consider observations in a neighborhood V ⊂M of µ.

Let W ⊂ I−(p+) \ J−(p−) be relatively compact and open set.

The light observation set for q ∈W is

PV (q) := {γq,ξ(r) ∈ V ; r ≥ 0, ξ ∈ L+
q M}.
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Theorem (Kurylev-Lassas-U, 2013). Let (M, g) be an open, globally

hyperbolic Lorentzian manifold of dimension n ≥ 3. Assume µ ⊂ V

is a time-like geodesic containing the points p− and p+, and V ⊂M
is a neighborhood of µ.

Let W ⊂ I−(p+)\J−(p−) ⊂ M be a relatively compact open set.

The set V and the collection of sets

PV (q) ⊂ V, where q ∈W

determine the conformal type of the set (W, g).
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Reconstruction of conformal factor in vacuum

Assume that we are given (V, g|V ).

When x ∈ W can be connected to observation set V with a light-

like geodesic γ ⊂W that lies in vacuum, we can find the conformal

factor and thus the metric tensor g near x.
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Reconstruction of the topological structure of W

W

q

V

q1

q2

x1

µ

Assume that q1, q2 ∈ W are

such that PV (q1) = PV (q2).

Then all light-like geodesics from q1
to V go through q2.

Let x1 be the earliest point of µ ∩ PV (q1).
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Reconstruction of the topological structure of W

W

q

V

q1

q2

x1

µ

z2
z1

Assume that q1, q2 ∈ W are

such that PV (q1) = PV (q2).

Then all light-like geodesics from q1
to V go through q2.

Let x1 be the earliest point of µ ∩ PV (q1).

Using a short cut argument we see that

there is a causal curve from q1 to x1
that is not a geodesic.
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Reconstruction of the topological structure of W

W

q

V

q1

q2

x1

x2

µ

z2
z1

Assume that q1, q2 ∈ W are

such that PV (q1) = PV (q2).

Then all light-like geodesics from q1
to V go through q2.

Let x1 be the earliest point of µ ∩ PV (q1).

Using a short cut argument we see that

there is a causal curve from q1 to x1
that is not a geodesic.

This implies that q1 can be

observed on µ before x1.

The map PV : q 7→ 2TV is continuous

and one-to-one.

As W is compact, the map

PV : W → PV (W ) is a homeomorphism.

92



Determination of conformal type

The light cone L+
x M ⊂ TxM is a quadratic variety and thus real-

analytic. When we are given an open subset of it, the whole surface

can be determined. This determines the conformal type of the

metric g at any x ∈ U .

Due to caustics, there are many exceptional cases.

Figures: Wineglass by P. Doherty and Einstein’s ring by R. Gavazzi

and T. Treu.
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Possible applications of the theorem

Left: Variable stars in Hertzsprung-Russell diagram on star types.
Right: Galaxy Arp 220 (Hubble Space Telescope)

Artistic impressions on matter falling into a black hole and
Pan-STARRS1 telescope picture.
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